Critical behavior of a parity conserving cellular automaton with spatial disorder

Géza Ódor MTA-

Motivation: finding nonequilibrium critical phase transition universality class candidate for experimental observation

Branching and annihilating random walks (BARW)

- $A \xrightarrow{\sigma} (n+1)A$, $2A \rightarrow A$, $A \rightarrow 0$ <-- 1+1 d realization -->
- For n=1 directed percolation (DP), contact process, epidemic spreading
 ~ BARW1 ~ BARWodd (no A->0)

 $t\downarrow$

 $\xi(t,\sigma)$

- Phase transition with DP class universal behavior:
 - $\rho_{\infty} \propto (\sigma \sigma_{c})^{\beta} \qquad \rho(t) \propto t^{-\alpha}$ $\xi_{\infty} \propto (\sigma \sigma_{c})^{-\nu} \qquad R \propto \xi \propto t^{z/2}$
- Well known exponents, field theory
- Robust universality class, still lacks experimental realization
 <- sensitivity to disorder

Annihilating random walks (ARW)

- A + A -> A reaction (~ A + A -> 0)
- Mean-field description: $d\rho(t, x)/dt = D\Delta\rho(t, x) k\rho^2(t, x)$ asymptotic solution : $\rho(t) \sim 1/t$
- d <= 2 spatial dimensions the fluctuations are relevant: d = 1 : $\rho(t) \sim 1/\sqrt{t}$ d = 2 : $\rho(t) \sim \ln(t)/t$ "upper critical dimension": $d_c=2$
- Experimental verification in 1d TMMC: *R. Kroon, H. Fleurent, R. Sprik, PRE 47 (1993) 2462.*

The parity conserving universality class (PC) BARW2, BARWe

- First seen in 1d stochastic CA by Grassberger 1984
- Nonequilibrium kinetic Ising modell (NEKIM) (T=0 spin flipp + T>0 spin flipp) *N. Menyhárd, J. Phys. A 1994.*

 Z_2 symmetry, domain walls --> particles:AA-> 0A-> 3Aparity conservation, non-DP class :(AA-> 0, A-> 2A)

- BARW2 or BARWe models Takayasu&Tretyakov, Jensen
- Field theoretical description Cardy & Tauber ('98) $d_c = 4/3$ NPRG by Canet et al. 2005

Knowledge about the effects of disorder (spatial quenched)

- Harris stability criterion: dv > 2PC class: d=1, v=1.857(1) -> disorder relevant
- Real space renormalization study of BARW2 (*Hooyberhs et al. 1999*): No strong disorder fixed point
- Inactive phase (ARW) :
 - Barriers and traps to diffusion -> subdiffusive behavior below a critical temperature, slower nonuniversal power law Schütz & Mussawisade 1998 (exact calculation)
 - Random reaction probabilities -> marginal perturbation
 Doussal & Monthous 1999 (real space renormalization)

NEKIMCA model algorithm (Menyhárd & Ódor, JPA 1995)

 $\uparrow \uparrow \cdot \downarrow \xrightarrow{W_i} \uparrow \cdot \downarrow \downarrow$

 $(\bullet = A)$

- Diffusion:
- Annihilation:
- $\begin{array}{c} \uparrow \cdot \downarrow \cdot \uparrow \stackrel{W_o}{\to} \uparrow \uparrow \uparrow \\ \uparrow \uparrow \cdot \downarrow \downarrow \stackrel{W_i^2}{\to} \uparrow \cdot \downarrow \cdot \uparrow \cdot \downarrow \end{array}$ • Branching: $w_i = (1 - \delta)/2$ $w_o = (1 + \delta)$ where: The branching is the result of two overlspping diffusion steps in this syncronous SCA !
- Multispin (bit) coding, 32 or 64 samples evolve at once with the same random number sequence.

Results: Phase diagram

Uniformly distributed disorder:

 $x(j) < q_i(j) = w_i + \chi(j)$ $x \in (0,1)$ $y(j) < q_{o}(j) = w_{o} + \chi(j) \quad y \in (0,1)$ $\chi \in (-\epsilon, \epsilon)$

Disorder increases the size of the absorbing phase

PC transition

- Diffusion blocks where: $q_o(j) > 1$
- In odd parity blocks particles survive "blocking" transition to a new active phase

Scaling behavior on the PC class transition line I. (weak disorder $\varepsilon < -0.4$)

• Kink density decay from homogenous, random inintial state, L=10⁵, t_{max}=10⁸ MCS

$$ho \propto t^{-\alpha}$$

• PC class ($\alpha = 0.28(1)$) for weak disorder

 $(\varepsilon = 0.0, 0.1, 0.2, 0.3, 0.4)$

• Effective exponent:

$$\alpha_{eff} = \frac{-\partial \ln(\rho)}{\partial \ln(t)}$$

 $\epsilon = 0.3, -\delta = 0.571, 0.57, 0.568, 0.5675, 0.567, 0.565, 0.56, 0.55$

 $\epsilon = 0.5, -\delta = 0.613, 0.612, 0.611, 0.609$

Cluster exponents z, η decrease

as well.

TABLE I.	Numerical	results	for	the	disordered	PC	class	transi-
tion line.								

e	$-\delta_c$	α	β	z	η
0.0	0.550(1)	0.280(6)			
0.1	0.5513(5)	0.280(6)			
0.2	0.557(1)	0.280(6)			
0.3	0.5676(1)	0.280(5)	0.95(1)	1.11(1)	0.285(5)
0.4	0.5849(1)	0.265(10)			
0.5	0.6115(4)	0.25(1)	0.84(2)	1.0(1)	0.252(6)
0.6767(2)	0.7	0.22(1)	0.80(2)		

Scaling behavior above the PC line (inactive phase)

0.6 ACTIVE 0.4 0.2 ABSORBIN 0.3 0.4 5 4 =0.57pt 3 2 1 $\epsilon = 0.1$ 0 10³ 10^{2} 10⁵ 10¹ 10⁴ 10⁶ 107 108

0.8

• Kink density decay from homogenous, random inintial state, L= 10^5 , $t_{max} = 10^8$ MCS

$$ho \propto t^{-\alpha}$$

- ARW class behavior $\alpha = 0.50(1)$ for small ε
- Increasing α just below the blocking transition line
- Agreement with Schütz's results

Scaling behavior on the blocking transition line (diffusion blocks) I.

• Kink density decay from homogenous, random inintial state, $L = 10^5$, $t_{max} = 10^8$ MCS

$$ho \propto t^{-lpha}$$

- ARW + log. Corrections for weak disorder (without Ablocking)
- Increasing α (>0.5) if the annihilation is blocked as well.

Scaling behavior on the blocking transition line (clusters) II.

 $\epsilon = 0.7, 0.6, 0.0, 0.2, 0.125$

 Cluster evolution from a single kink, (odd sector), L=10⁵, t_{max}=10⁸ MCS

 $N \propto t^{\eta}$ $R \propto t^{z/2}$

- ARW + corrections (z=1) for ε < 0.5 (without annihilation blocking)
- Decreasing z if annihilation is blocked as well.
- $N(\infty)$ increases with ε , but $\eta = 0$

Scaling above the blocking transition line (active fluctuating state)

TABLE II. Numerical results for the freezing transition line.

ε	$-\delta_c$	α	β	z	$N(\infty)$	
0.2	0.2	0.47(3)	1.00(5)	0.95(5)	1.031(1)	
0.4	0.4	0.47(3)		0.95(5)	1.275(5)	
0.5	0.5	0.43(1)		1.0(2)	1.85(5)	
0.6	0.6	0.41(1)	0.75(3)	0.76(2)	3.75(5)	
0.7	0.7	0.39(1)	0.68(4)	0.72(2)	14(1)	

• Without annihilation blocking for $\varepsilon < 0.5$: $\beta = 1$.

$$\rho \propto c_b \propto \langle l \rangle^{-1}.$$
 (20)

For the exponential block size distribution (18) the average block size is

$$\langle l \rangle = [-\ln(p_{nw})]^{-1}, \qquad (21)$$

with the no-wall probability

$$p_{nw} = 1 - p_w = 1 - (w_o + \epsilon - 1) = 2 - \epsilon - w_o.$$
 (22)

The kink density is

$$\rho \propto -\ln(2 - \epsilon - w_o), \tag{23}$$

which for small wall probability p_w has the leading-order singularity

 $\rho \propto p_W.$ (24)

• Decreasing β if the annihilation is blocked as well.

Summary

- A PC class for weak disorder -> Experimental observation ? For annihilation blocking continuously changing exponents
- AA->0 stable fixed point for weak disorder (inactive phase). For strong disorder the decay slows down (continuos exponents)
- "Blocking" transition appears for strong diffusion disorder
- Published: PRE 73 (2006) 036130
- Acknowledgements: F. Iglói, G.M. Schütz, LCG, Clustergrid Hungary

Possible realization by a surface growth model

H. Hinrichsen, G. Ódor, PRL, PRE 1999.

- Dimer growth model <---> Unidirectionally coupled parity conserving RD systems:
 A->3A B->3B C->3C ...
 2A->0 2B->0 2C->0 ...
 A->A+B B->B+C C->C+D
- Growth transition <-->
 absorbing phase transition at
 each level with parity
 conserving class behavior