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Abstract. We study the lattice reaction–diffusion model 3A → 4A, A → ∅
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simulation results suggest that the phase transition is discontinuous at high
diffusion rates. In this regime the order parameter appears to be a discontinuous
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absorbing phases is found. Based on an effective mapping to a modified compact
directed percolation process, we shall nevertheless argue that the transition is
continuous, despite the seemingly discontinuous phase transition suggested by
studies of finite systems.
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1. Introduction

The exploration of phase transitions in simple, one-component nonequilibrium models
has attracted considerable interest [1]–[4], and important progress towards identifying
the related universality classes has been made [5, 6]. In nonequilibrium models phase
transitions may occur even in one-dimensional systems: the well known arguments due
to Landau and to van Hove [7] against phase transitions in one-dimensional systems with
short-range interactions do not apply in the absence of detailed balance. However, in low
dimensions the effect of fluctuations is stronger, making continuous phase transitions more
common. (A familiar example is the three-state Potts model, which exhibits a continuous
transition in two dimensions, and a discontinuous one for d > 2.)

In one dimension, discontinuous phase transitions have been found in models with
long-range interactions [8], or a conserved density [9, 10], and in multi-component
systems [11]–[14]. Compact directed percolation (CDP) has a discontinuous transition
between a pair of absorbing states (all sites full or all empty) [15, 16]; a similar transition
between absorbing states is found in the one-dimensional Ziff–Gulari–Barshad model [17].
A discontinuous transition between and active phase and an absorbing one in a single-
component model was claimed for the triplet creation model (TCM) [18], which does
not possess a conservation law or long-range interactions. This model features particle
reactions 3A → 4A, A → ∅ and explicit diffusion (hopping)3. On increasing the diffusion
probability, a crossover from a continuous to a discontinuous phase transition was detected

3 By explicit diffusion we mean a particle hopping or exchange process, in contrast to implicit diffusion, generated
by the dynamics of particle annihilation and creation at neighboring sites. Thus the coarse-grained description of
the contact process, and many other models, includes a diffusion term, despite the absence of explicit diffusion.
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in simulations and cluster mean-field approximations. Similar behavior was also reported
in a stochastic cellular automaton [8].

Subsequently, Hinrichsen argued that in one dimension discontinuous transitions
between an active and an absorbing state cannot exist in models like the TCM [19, 20]. The
original findings for the TCM [18] were nevertheless confirmed in spreading simulations
by Cardoso and Fontanari [21] and in fixed order parameter simulations by Fiore and de
Oliveira [22]. The spreading exponents are shown in [21] to be those of compact directed
percolation (CDP) [15, 16]; a tricritical point is suggested for a diffusion probability
D � 0.95. Very recently Park [23] reported simulation results that again support a
continuous phase transition, belonging to the directed percolation (DP) universality class,
at high diffusion rates.

Recently, a field theoretic analysis of bosonic reaction–diffusion (RD) models led to
a hypothesis [5] based on a general phase transition classification scheme: bosonic, one-
component RD systems with n-particle creation and m-particle annihilation always exhibit
a first-order transition if n > m. This is indeed the case above the upper critical dimension
(see [24]). However, in bosonic models one has to introduce a higher-order coagulation
term m′A → (m′ − l)A with (m′ > n), to avoid an infinite particle density in the active
phase. Furthermore the topological phase space method used in [5] deals with the reactions
(creation and annihilation) but does not take into account the effect of diffusion, which
turns out to be relevant in some cases, when different reactions compete [25]–[27].

In this work we study the TCM in an effort to determine whether multi-particle
creation, combined with rapid diffusion, can overcome fluctuations and generate a
discontinuous phase transition in one dimension. This is a problem of longstanding interest
in nonequilibrium statistical physics, and is related to the existence of first-order depinning
transition in nonequilibrium wetting (i.e. in a system with multiplicative noise, with an
attractive wall) [28].

The remainder of this paper is organized as follows. In section 2 we define the model,
and review applicable simulation methods and previous results regarding the nature of
the phase transition. Section 3 is devoted to a discussion of n-site approximations, and
section 4 to our simulation results. In section 5 we use these results to motivate a simplified
description of the model in the high diffusion rate regime, and discuss the nature of the
transition using this mapping. Finally, in section 6, we summarize our findings.

2. The triplet creation model

The TCM is defined on a lattice, with each site either vacant or occupied by a particle;
multiple occupancy is forbidden [18]. In the one-dimensional TCM, a particle (A) attempts
diffusion at rate D ≤ 1, creation (3A → 4A) at rate λ(1−D)/(1 + λ), and is annihilated
(A → ∅) at rate (1 − D)/(1 + λ). In a diffusion attempt, one of the nearest-neighbor
(NN) sites of the particle is chosen at random, and the particle jumps to this site if it is
empty. If the target site is occupied, the configuration remains the same. In a creation
attempt, if both NN sites of the particle are occupied, then one of the second-neighbor
sites of the central particle is chosen at random, and if this site is empty, a new particle
is placed there. If the conditions of two occupied NN sites and an empty target site are
not fulfilled, the configuration does not change. Annihilation occurs independently of the
states of neighboring sites. The configuration with all sites empty is absorbing. Since the
sum of these transition rates is unity, the total transition rate in a system with N particles
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is simply N . In simulations, the time increment associated with each attempted event
(whether accepted or not) is Δt = 1/N , and one Monte Carlo step (MCS) corresponds to
an accumulated time increment of unity.

In [18] the one-dimensional TCM was shown to exhibit a phase transition between
the active and absorbing states; the transition was found to be continuous (and in the
DP universality class) for smaller diffusion rates, but discontinuous for large D. By a
discontinuous transition we mean one in which the order parameter is a discontinuous
function of the relevant control parameter(s), in the infinite-size limit. In the TCM the
order parameter is the particle density ρ, and the control parameters are λ and D. Since
one of the phases is absorbing, at a discontinuous transition ρ should jump between zero
and a finite value.

The characterization of a transition as continuous or discontinuous in numerical
simulations is fraught with difficulties: finite-size rounding can mask the discontinuity, and
any finite system must eventually become trapped in the absorbing state. To circumvent
these problems, a number of strategies have been proposed.

Hysteresis with a weak source. A characteristic feature of discontinuous phase transitions is
hysteresis. If one of the phases is absorbing; however, hysteresis cannot be observed simply
by varying a control parameter, since the absorbing phase allows no escape. Bideaux
et al [29] showed that when the transition is discontinuous, adding a weak source of
activity changes the absorbing and active phases to low-activity and high-activity phases,
respectively. One may then observe a hysteresis loop between these phases, on varying
the control parameter. This approach was used in [29] to demonstrate a discontinuous
phase transition in a probabilistic cellular automaton, and was applied to the TCM in [18],
yielding a hysteresis loop. Below, we shall revisit the question of scaling under a weak
source.

Conserved order parameter simulations. In conserved order parameter simulations [30],
particles are neither created nor destroyed. Changes in configuration occur through
particle jumps, which can be of any size up to that of the entire system, in a manner
that respects the local rules of the process. The simulation yields an estimate for the
control parameter value corresponding to the chosen order parameter density. Using this
method, Fiore and de Oliveira found evidence for a discontinuous transition in both the
TCM and the related pair creation model (with creation reaction 2A → 3A) at high
diffusion rates [22].

Quasistationary (QS) simulation. As in conserved order parameter simulations, QS
simulation removes the absorbing state from the dynamics, but in a manner that samples
the quasistationary probability distribution (i.e. conditioned on survival) [31]. A study of
the TCM using this method [14] showed that as the system size tends to infinity, the QS
order parameter appears to develop a discontinuity between zero and a positive value, as
λ is varied at a high diffusion rate, D = 0.98. (For a finite system the discontinuity is
of course rounded.) A study of the TCM with biased diffusion (hopping in one direction
only) yielded evidence of a sharp discontinuity [32].

Spreading simulations. Studies of the spread of activity, starting from a seed at the origin,
have long been employed to characterize continuous phase transitions to an absorbing
state [1, 33]. At the critical point, the survival probability P (t), mean number of active
sites n(t), and mean-square distance R2(t) of active sites from the origin all follow power
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laws. At a discontinuous transition, there is in principle no reason to expect scale-invariant
spreading dynamics. Nevertheless, in the case of the TCM, Cardoso and Fontanari [21]
demonstrated power-law spreading at the transition point, λc, for D = 0.98. The scaling
exponents were identified as those of CDP, which, as noted above, suffers a discontinuous
transition between a pair of symmetric absorbing states.

Interface motion. Suppose we prepare the system with all sites occupied, allow it to relax
to the QS state, and then remove all particles from half of the lattice. In the subsequent
evolution, the interface between active and inactive regions broadens due to diffusion, and
in general drifts toward one region or the other. Below we report studies showing that
the drift velocity is proportional to λ − λc. In a related analysis, we initialize the system
with all sites in the region 1, . . . , M occupied, and sites M + 1, . . . , L empty, and study
the long-time survival probability P (M). At the transition, the dependence of P (M) on
M is consistent with independent, randomly diffusing interfaces, as in CDP. This result
supports the existence of two phases, one absorbing, the other active, separated by a large
gap in density. The two phases do not coexist: the fluctuating interfaces eventually meet,
and one of the phases is lost from the system.

Summarizing, the above mentioned studies, some from the recent literature and others
to be reported below, provide evidence for a discontinuity in the QS order parameter, for
hysteresis, and for a connection between the TCM at high diffusion rate and compact
directed percolation.

2.1. Hinrichsen’s objection

Some years ago, Hinrichsen presented an argument to the effect that discontinuous
phase transitions between an active and an absorbing state are impossible in one-
dimensional systems with local interactions, and without additional conservation laws,
special boundary conditions, or macroscopic currents [19, 20]. The argument is based
on the observation that the effective surface tension of interfaces in such systems does
not depend on the size of the domains they delimit. Hinrichsen’s argument prohibits
the presence of fixed, stable boundaries between coexisting phases; as noted, no such
boundaries have been observed in simulations. But this in itself does not appear to
imply that the dependence of the order parameter on growth rate must be continuous at
the transition. The one-dimensional totally asymmetric exclusion process (TASEP), for
example, exhibits a discontinuous phase transition in a certain region of parameter space,
even though the position of the boundary between high- and low-density phases fluctuates
over the entire system [34, 35].

Hinrichsen [19] also reported simulation results supporting a continuous transition in
the TCM at diffusion rate D = 0.9, that is, above the estimate for Dt given in [18]. It is
now generally acknowledged that Dt > 0.9 in the TCM.

In a recent study [23], Park reported simulation results that support DP-like scaling
in the TCM at diffusion rates of 0.95 and 0.98. Specifically, the order parameter (starting
from a filled lattice) appears to decay at long times as ρ(t) ∼ t−δ, with δ taking its
DP value, over about two decades in time. We note, however, that the decay exponent
is very sensitive to the choice of the time interval used for analysis and of the control
parameter λ. Analyzing simulation results for D = 0.98 in studies extending to 109 MCS,
we obtain local decay exponents δeff between 0.1 and 0.2, varying λ in a very narrow
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range. A crossover between a long supercritical plateau for t ≤ 107 and a rapid decay to
an inactive state cannot be ruled out. For D = 0.98, the regime during which DP-like
scaling is found in [23] (i.e. 107 ≤ t ≤ 109) corresponds to overall particle densities in the
range 0.67–0.32. While scaling behavior can be observed at such densities in the contact
process [1], definitive results for the decay exponent would require studying systems with
substantially smaller values of ρ. Finally, three or more critical exponents would have to
be determined to demonstrate convincingly that the transition falls in the DP class.

Although the results of Hinrichsen and of Park do not appear to rule out rigorously a
discontinuous transition in the TCM, we believe that they are fundamentally correct. This
conclusion is based not on simulation results but rather on a mapping to a modified CDP
process, to be developed in section 5. Analysis of this mapping leads to the conclusion that
the transition is in fact continuous, despite abundant numerical evidence to the contrary.

3. n-site approximations

One of the most common theoretical approaches to Markov processes with spatial
structure is a truncation of the master equation known as an n-site approximation [36].
Such approximations have been applied to the TCM in efforts to determine the order of
the transition; in this section we review and extend these results.

The simplest method in this family is dynamic mean-field theory or the one-site
approximation, in which the probability of an m-site configuration is factored into a
product of m single-site probabilities, so that, for example, P (• • • ◦) � ρ3(1 − ρ), where
• (◦) denotes an occupied (vacant) site and ρ is the fraction of occupied sites. The
resulting equation for dρ/dt yields rather poor predictions for the TCM; better results are
obtained using larger clusters. In the n-site approximation, the equations that govern the
probability distribution for clusters of n sites are truncated by expressing the probabilities
of n + 1 site (or larger) clusters in terms of the n-site distribution. In the three-site
approximation, for example, we write P (• • • ◦) � P (• • •)P (• • ◦)/P (• •). As n grows,
the number and complexity of the equations increases rapidly, but it is possible to generate
the equations, and integrate them numerically, via a computational algorithm [37].

In [18], the four-site approximation for the TCM was found to predict a continuous
phase transition for diffusion rates D < Dt and a discontinuous one for D > Dt. The
predicted value for the tricritical diffusion rate Dt, however, is much smaller than that
reported in simulations (Dt � 0.95). Since the phase diagram predicted by the n-
site approximation generally converges to the correct one as n → ∞, it is of interest
to study the results for larger n. In certain cases, predictions based on a sequence
of n-site approximations behave in a consistent manner, and can be extrapolated to
provide estimates of the transition point and critical exponents, via the coherent anomaly
method [37, 38].

For small n, the position of Dt varies considerably. For example, the n ≤ 3
approximations yield a discontinuous transition even for D = 0, but for n ≥ 4 there
is a tricritical point at some Dt > 0. The estimates for Dt increase gradually with n; for
n = 8, one finds Dt > 0.5, for example. On the other hand, for a fixed, large diffusion rate,
the transition remains discontinuous, with a large jump in the order parameter, which does
not diminish appreciably with increasing n. For D = 0.98, for example, figure 1 shows
that all the approximations studied (n ≤ 18) yield a discontinuous transition.

doi:10.1088/1742-5468/2009/08/P08024 6
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Figure 1. Order parameter versus creation rate in the one-dimensional TCM
with D = 0.98, in the n-site approximation with n = 8, . . . , 18. Points show the
simulation.

Recently, Ferreira and Fontanari published results casting doubt on the utility of
n-site approximations for the TCM [39]. They show, for example, that for D = 0, the
values of λc veer away from the simulation value as n is increased from 11 to 18; our
studies confirm this observation. (We note that a nonmonotonic approach to the critical
point is observed in a stochastic cellular automaton in which at least three particles are
required for particle generation or survival [8].) Moreover, the values of the tricritical
reproduction rate λt(n) (for n ≤ 14) appear to converge to an unphysical (negative) value
as n → ∞ [39].

Thus if the n-site approximations converge to the correct values, they do so in a
nonmonotonic fashion, such that for the cluster sizes accessible with present technology
(n ≤ 20 or so), quantitative results for λc cannot be obtained for the TCM. Although
our n-site approximations show stable nonvanishing gap sizes at D = 0.98 for n ≤ 18
(figure 1), we find that for a given level (n = 13, say), λc(D) is not a monotonic function
of D, and the location of the tricritical point is rather uncertain. Figure 2 shows that
on increasing the diffusion rate from D = 0.6 to 0.66, the critical point shifts to higher
values, but for D > 0.66 this tendency reverses. On the other hand, there is no evidence
of a discontinuous transition for 0.67 ≤ D ≤ 0.71. Our analysis provides a higher λt

estimate for n = 13 than found in [39]; the reason for this difference is not known, since
our result for λt(n = 4) agrees with that reported in the latter work. We observe a similar
behavior for n = 14 and 15; our tricritical point estimates do not fall on the extrapolation
line given in [39].

For the cluster sizes studied, λt(n) cannot be fitted with a linear function of 1/n, so
that the n → ∞ limiting value cannot be estimated with confidence. It seems likely
that λt(n) exhibits an oscillatory convergence with n; if so, the question of whether
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Figure 2. Order parameter versus creation rate in the one-dimensional TCM in
the 13-site approximation.

limn→∞ Dt(n) < 1 (that is, the existence of a discontinuous transition) cannot be resolved
using the available n-site approximation results.

4. Simulation results

We study the TCM via Monte Carlo simulation, using several approaches that complement
earlier analyses: dependence on the initial value of the order parameter, interface
dynamics, scaling in the presence of a weak source of activity, and scaling of the
quasistationary order parameter. While some of the results would seem to provide good
evidence of a discontinuous transition, we shall defer our conclusion until section 5.

4.1. Initial density dependence

If a phase transition is discontinuous the evolution of the system should depend strongly
on the initial condition, while at a continuous transition the evolution is toward the same
QS state regardless of the initial condition. In [40], simulations of the TCM at a diffusion
rate D = 0.98 are reported, showing that at the transition (λc � 9.60) the value of the
order parameter at long times depends on its initial value. For initial particle densities
ρ(0) between 0.3 and unity the system evolves to the active state, while for ρ(0) ≤ 0.3 it
rapidly approaches the absorbing state. (In studies using ρ(0) < 1, the initially occupied
sites are chosen at random, uniformly over the lattice.) These results demonstrate that an
active phase, characterized by a high value of the order parameter, is accessible starting
from a high density but not from a low one. The findings for a high diffusion rate are
in sharp contrast to those found for D = 0, for which the critical reproduction rate is
λc = 12.015. In this case, the particle density attains the same QS value, starting from
very different initial values.
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Figure 3. TCM: ρ(t) for D = 0.98, using various initial particle densities, and
creation rates near the transition value, as indicated.

Here we extend the simulations of [40] to much larger systems. We follow the evolution
of the order parameter ρ(t) in systems of L = 2 × 105 sites (with periodic boundary
conditions) for times of up to 109 MCS, averaging over 5–20 realizations. For D = 0.98, we
find that for low initial values (ρ(0) ≤ 0.25), the density falls exponentially for λ ≤ 9.616
(see figure 3).

For the same reproduction rates, using ρ(0) > 0.25, the order parameter ρ(t) exhibits
a long plateau (103 < t < 105 MCS) at a high density. At longer times ρ(t) decays,
as expected in a finite system. For D = 0.5, by contrast, the order parameter curves
ρ(t), starting from high and low initial values, attain a common value at long times (see
figure 4).

4.2. Fluctuating boundary studies

In these studies the initial configuration consists of two blocks—one, of n0 sites, fully
occupied, and the other, of L − n0 sites, completely empty. For D = 0.98 and λ = 9.60,
one finds that in the initially occupied region, the particle density quickly relaxes to its
QS value of about ρQS � 0.83. The ensuing evolution is characterized by the drift of the
boundaries between active and empty regions. A given realization stops either when it
attains the absorbing state or when the number of particles indicates that the active phase
has filled the entire system (we use a particle number of Nstop = 0.84L as the criterion
for this event). Figure 5 shows a typical history for L = 2000 and n0 = 1500. (The graph
shows the mean density in blocks of 50 sites, with time increasing downward, in steps
of 10 000 time units between each density profile.) The boundaries between active and
inactive regions appear to follow independent, unbiased random walks.

If the boundaries can be represented by independent, unbiased random walkers, then
the number N(t) of particles (which is approximated by ρQS times the size of the active
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Figure 4. ρ(t) as in figure 3, but for D = 0.5.

Figure 5. Space–time evolution of particle density for D = 0.98, λ = 9.60, and
L = 2000, starting from a fully occupied region of 1500 sites with the remainder
empty. Time increases downward, with each sweep (at intervals of 10 000 time
units) showing the density profile averaged over blocks of 50 sites.
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Figure 6. Probability pstop versus ρ0 = n0/L in the TCM with an inhomogeneous
initial configuration. +, L = 500; open squares, L = 1000; filled squares,
L = 2000. The dashed line is for pstop = n0/Nstop as expected for a random
walk.

region) should also follow an unbiased random walk. The walk starts at N = n0 and
is subject to absorbing frontiers at N = 0 and Nstop. Well known results on random
walks [41] then imply that the probability pstop of reaching Nstop before N = 0 is given by
n0/Nstop. We estimate pstop in sets of 100 realizations, on rings of 500, 1000, and 2000 sites;
the linear trend evident in figure 6 supports the fluctuating boundary interpretation. This
in turn suggests that at high diffusion rates, the dynamics of active and inactive domains
is effectively that of CDP.

Away from the phase transition, we expect the interface to drift on the average,
advancing into the inactive region for λ > λc and vice versa. We determined the mean
interface velocity for D = 0.98 on rings of 3000 sites, using n0 = 1500. After allowing
the system to relax for 50 000 MCS, we record the density profile ρi, and determine the
interface position xi via the criterion ρ(xi) = ρB/2, with ρB the bulk particle density at
the λ value of interest. We then allow the system to evolve for an additional 20 000 MCS,
and again determine the interface position. Figure 7 shows the interface drift velocity
v, as determined in samples of 3 × 104 realizations, varying linearly with λ − λc; linear
regression yields v = 0 for λ = 9.60(1), in agreement with other estimates of the transition
point. (We verified that the interface velocity obtained using a ring of 5000 sites, and
observation times of 105 and 2 × 105 MCS, agrees to within 2% with the value obtained
using the smaller system.)

The above results show that for large D the system is divided into well defined
active and empty regions. A typical configuration of a large system (2× 104 sites) at the
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Figure 7. Interface drift velocity v versus creation rate λ, for D = 0.98, L = 3000.
The straight line is a least-squares linear fit to the data.

transition (D = 0.98, λ = 9.608) bears this out. In order to visualize the configuration
of a large system, we plot the cumulative particle number S(x) =

∑x
i=1 σi versus position

x, where σi is an indicator variable taking values of 0 and 1 at empty and occupied sites,
respectively. Thus the local density ρ(x) corresponds to the slope of the graph at x, with
empty regions corresponding to horizontal lines. In these studies we initially occupy half
the sites, randomly, so that initially the local density is �0.5. In the initial phase of the
evolution, the global density rapidly grows to about 0.8; thereafter it begins to fluctuate,
as empty regions form. The configuration shown in figure 8, for a time of about 2.6× 108

MCS (comparable to the simulation times in [23]), consists of a series active regions with
density ρ � 0.845, and empty regions, giving an overall density of 0.25. Of note is the high
density in the active regions, and the similarity of the density in active regions separated
by large inactive gaps. We verified that for this choice of D and λ, the density in active
regions ρa = 0.840(5), independent of system size and of overall density. The system
reaches the absorbing state via fluctuations of the boundaries between active and inactive
regions, which eventually drive the active fraction to zero, while the active region density
remains constant. For comparison, in figure 8 we also show a typical configuration for
D = 0 and λ = λc(0) = 12.015. The initial condition is the same as for D = 0.98, and
the simulation is again halted when ρ falls to 0.25, which occurs at t � 17 000 MCS for
these parameters. In this case the empty regions are typically much smaller than under
rapid diffusion, and the local density in active regions varies considerably.
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Figure 8. Cumulative particle number S(x) versus position x in a typical
configuration. Left, D = 0.98, λ = 9.608; right, D = 0, λ = 12.015.

4.3. Effect of a weak source

We turn next to studies of the stationary order parameter in the presence of a weak source,
h, defined as the probability, per unit time and per vacant site, of inserting a particle.
In [18] a weak source was used to demonstrate hysteresis; here, we consider the scaling of
the order parameter as h → 0 at the transition. For D = 0, we determine ρ at λ = 12.015,
varying h between 10−9 and 10−5. For each h value, a series of lattice sizes (from 5000 to
50 000 sites) are used to estimate the limiting infinite-size value of ρ. We verify the scaling
law ρ ∝ h1/δh with 1/δh = 0.109(1), in agreement with the value expected for directed
percolation in one spatial dimension, 1/δh = 0.108 25(3) [1].

For D = 0.98 and λ = 9.60, we observe a very different scenario. For a given value of
h, two values of ρ are found, depending on the initial density. For large initial densities,
ρ approaches a value of about 0.815 as h → 0, while for a low initial density, ρ ∝ h (see
figure 9). The order parameter, moreover, is essentially independent of system size for
L ≥ 1000. These results are consistent with a discontinuous transition, and the absence
of critical scaling, for D = 0.98.

4.4. Quasistationary order parameter

To close this section we report results on the QS value of the order parameter as a function
of system size. In [14], estimates for the limiting (L → ∞) value of ρQS were found to
exhibit a discontinuity at the transition, for D = 0.95; here we focus on D = 0.98.
We determined ρ in QS simulations of duration tmax = 107 MCS (for L = 100) up to
tmax = 2 × 109 MCS (for L = 104), allowing the initial 10% of the time for relaxation. In
figure 10 we plot the QS order parameter versus 1/L, for λ values near the transition. The
curves divide into two families. One set (for λ ≤ 9.605) approaches zero as L → ∞, while
for larger values of λ, the density approaches a nonzero limiting value. In the minute
interval 9.605 < λ < 9.610 the limiting (L → ∞) value of the order parameter ρ jumps
from zero to about 0.6. The inset shows that at the transition point, λ = 9.6084, ρ decays
exponentially with system size. At a continuous transition one expects the density to
decay as a power-law, ρQS ∼ L−β/ν⊥.
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Figure 9. Order parameter versus source intensity h for D = 0.98, λ = 9.60,
L = 1000. Upper curve, initial density unity; lower curve, initial density zero.

5. Why the transition is continuous, and why it appears to be discontinuous

At various points in this discussion we have drawn an analogy between the TCM at high
diffusion rates and compact directed percolation. The picture that emerges from the
simulations reported above, and from some of the earlier studies [21, 22], is that in this
regime the system contains essentially two kinds of regions, one of high density and the
other empty. The boundaries between these regions perform independent random walks,
leading eventually to extinction of activity.

The above scenario corresponds to the phase transition in CDP, and suggests that
we construct a reduced description in which blocks of � sites in the active region (with
particle density of the order of ρa ≈ 0.85) correspond to sites in state 1 of the CDP, and
blocks of � empty sites correspond to sites in state 0 in the CDP. The dynamics of the
CDP consists exclusively of random walks performed by the interfaces between strings
of zeros and strings of ones. As we vary λ through its critical value in the TCM, the
drift velocity of the interfaces in the corresponding CDP passes through zero, and the
asymptotic density of ones jumps from 0 to 1.

If the above caricature of the TCM as an effective compact directed percolation
model were valid, a discontinuous transition would be guaranteed. There are, however,
two additional processes that must be taken into account. Evidently, gaps (strings of
empty sites) can arise within active regions, otherwise the TCM starting from a fully
occupied lattice would never reach the absorbing state. A fundamental point is that the
process of gap nucleation, while essential to the TCM dynamics, occurs at an extremely
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Figure 10. QS order parameter ρ versus reciprocal system size for D = 0.98 and
(lower to upper) λ = 9.60, 9.605, 9.61, 9.62, and 9.65. Inset: semi-log plot of ρ
versus L for λ = 9.6084.

small rate. By ‘gap nucleation’ we mean the generation of a gap large enough (of g∗ sites,
say) that its boundaries fluctuate independently of one another. Gaps of size g ≥ g∗ are
equally likely to grow or to shrink, whereas smaller gaps tend to shrink due to particles
diffusing in from the adjacent occupied regions.

The data of figure 3 permit an order of magnitude estimate of the rate of gap
nucleation: the density begins to fall appreciably from its plateau value at t ≈ 105,
and there are O(105) sites in the system, giving a rate of κ ∼ 10−10 per site. In
figure 11 we plot the mean first-passage time t for the appearance of a gap of size g
in a system of 104 sites (parameters D = 0.98 and λ = 9.608), starting with all sites
occupied. (In these studies t is estimated using samples of Nr = 50–500 realizations,
with smaller Nr for larger system sizes.) The first-passage time grows rapidly for
smaller sizes and then crosses over to a slower growth around g � 30, at which point
t ∼ 6 × 104. Identifying this crossover size as g∗ gives a nucleation rate of κ ∼ 10−9 per
site.

It is natural to take the block size � in the CDP mapping as the critical gap size g∗, so
that a one-site gap in the equivalent CDP process is equally likely to grow or to shrink to
zero. Since we map g∗ TCM sites to a single site in the CDP, the effective gap nucleation
rate in the latter is then κeff = g∗κ. The estimates for the nucleation rate and for g∗ given
above yield κeff in the range 10−9–10−7 per CDP site.

As noted above, a small gap can shrink when particles diffuse in from outside. Can
a large gap be destroyed in this manner? To answer this, consider an interface (treated
as fixed, for the sake of this argument) between large active and empty regions: the local
density ρ(x) = ρa for x < 0 and ρ � 0 for x > 0. Think of the edge of an active region as
a particle source. Particles are emitted at a rate of order s = 1 − D, diffuse away at rate
D, and decay at rate γ = (1−D)/(1 + λ). In the stationary state, a continuum diffusion
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Figure 11. Mean first-passage time t for appearance of a gap of size g.
Parameters: L = 104, D = 0.98, λ = 9.608.

analysis yields a local density for x > 0 of

ρ(x) = s

∫ ∞

0

dt e−γt e
−x2/4Dt

√
4πDt

(1)

giving ρ(x) � se−x/w with an interface width w =
√

D/γ. For D = 0.98 and λ = 9.60
this gives w � 23; for these parameters simulation shows that near the edge of a large
gap, the density decays to zero ∝e−x/25. Nucleation of an active region inside a gap occurs
at a rate of ≈(1 − D)[ρ(x)]3, making the probability of nucleating activity deep within
a gap negligible. For x = 100 and D and λ as above, for example, we find a nucleation
rate of ∼10−13. The essential point is that ρ(x) decays exponentially, so that nucleation
of activity is limited to the neighborhood of the edges, whereas the nucleation of gaps can
occur anywhere inside an active region.

Thus we conclude that the TCM at a high diffusion rate is equivalent to compact
directed percolation with a very small, but nonzero, rate of gap formation within clusters
of ones. But this process is in turn equivalent (insofar as scaling properties are concerned)
to the Domany–Kinzel cellular automaton (DKCA) [15] with p1 � 1/2 and p2 = 1 − κeff .
(Recall that in the one-dimensional DKCA, p1 is the probability of a site taking state 1,
given one neighbor in state 1, and one in state 0, at the preceding time, and that p2 is
the probability of state 1 given that both neighbors are in state 1 at the previous step.)
CDP corresponds to the line p2 = 1. From the work of Janssen [42] and of Lübeck [43]
we know that for p2 = 1 − ε, the transition occurs at pc = 1/2 + O(

√
ε).
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The phase transition of the DKCA is discontinuous only for p2 = 1; for any p2 < 1, it
is continuous and belongs to the DP universality class. We are led to the same conclusion
regarding the TCM: for any D < 1, there is a small but finite rate of nucleating gaps
within active regions, so that the effective value of p2 is slightly less than unity.

Given the nearness of the equivalent DKCA to the line p2 = 1, it is not surprising that
simulations of the TCM using lattice sizes L and simulation times tm yield an apparently
discontinuous phase transition for Ltm < 1/κ. It is only for large systems and long
simulation times that the effects of gap nucleation become apparent, as in the studies
of [19] and [23]. (Indeed, the results shown in figure 3 are also compatible with DP-like
decay of the order parameter.) But numerical studies of the stationary order parameter
can be expected to show discontinuous behavior, this near the CDP line. For similar
reasons, it is not surprising that n-site approximations, using clusters of fewer than 20
sites, miss the effect of gap nucleation; much larger clusters would be needed to capture
this properly.

It is perhaps worth recalling that CDP-like spreading behavior is observed in a
surface modified version of directed percolation in one spatial dimension [44]. In this
case, propagation of activity at the edges of the active region occurs with a different
creation rate (λ′, say) than in the bulk, which has a creation rate of λB. Let λc denote
the critical creation rate for the original problem, that is, for λ′ = λB. For λ′ < λc, the
phase transition occurs at some bulk creation rate λB > λc, which means that the bulk
has a finite activity density even for t → ∞. Thus the active cluster is compact, and
the scaling behavior is that of CDP. The essential difference between this model and the
TCM is that in the former case large gaps cannot be nucleated within the active region:
since λB > λc at the transition, gaps tend to shrink.

6. Discussion

We have presented various pieces of evidence suggesting that the order parameter is
a discontinuous function of the creation rate in the TCM at high diffusion rates (our
numerical studies focus on D = 0.98). We do not find evidence of stable coexisting active
and inactive regions; the boundaries between these regions are observed to fluctuate, as
asserted in [19]. The numerical evidence in favor of a discontinuous transition includes
hysteresis (under a weak source), the initial density dependence of the order parameter
at later times (with or without a particle source), the high particle density within active
regions, the random-walk-like fluctuations of the boundaries between active and inactive
regions, and the apparent absence of power-law scaling of the QS order parameter as a
function of system size, at the transition point.

Despite the numerical evidence in favor of a discontinuous transition, a mapping of the
TCM to a effective dynamics resembling that of compact directed percolation, but with
a very small gap nucleation rate, leads to the conclusion that the transition is continuous
for any D < 1. The studies reported above, suggesting a discontinuous transition, were
performed using relatively small systems and/or limited times. For example, to see the
effect of gap nucleation in those studies with a weak source of activity, the source strength
h would have to be much smaller than the gap nucleation rate κ.

The failure of n-site approximations to give a clear indication of the nature of the
transition may again be attributed to the very small gap nucleation rate for D � 1. These
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approximations, however, are problematic even for D = 0: the values predicted for λc do
not converge monotonically to the correct value with increasing n [39].

The continuous nature of the transition in the one-dimensional TCM was of course
asserted some time ago by Hinrichsen [19], and received further support in Park’s
simulations [23]. Our argument nevertheless contributes to an intuitive understanding
of this result, and might provide the basis for a rigorous demonstration of the continuous
nature of the transition.
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