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Abstract. Numerical evidence is presented to support  the conjecture that the gap-exponent  
relation remains valid for multi-defect lsing systems where exact solutions are  unavailable. 
Predictions for exponents corresponding to arbitrary lattice anisotropy are  given. 

1. Introduction 

Defect lines represent marginal perturbations to the critical Ising model in two 
dimensions. Exponents characterising the correlators defined along the defects are 
expected to vary continuously with the defect strengths (Bariev 1979, McCoy and Perk 
1980). The presence of these lines breaks (at least partially) the conformal symmetry. 
Therefore, the validity of the gap-exponent relation (Luck 1982, Cardy 1984), which 
connects the anomalous dimensions with the spectrum of the transfer matrix of a 
finite-width strip is questionable (Turban 1985, Guimar5es and Drugowich de  Felicio 
1986). 

This relation has been shown to stay valid in the case when a straight line defect 
divides the plane into two halves (Peschel and Schotte 1984, Henkel and Patk6s 1987b). 
These authors have solved the spectrum of the Hamiltonian of the strip and  compared 
the levels with the Hamiltonian limit of the exponents derived in the plane with finite 
anisotropy of the couplings J ,  and J , .  Since the continuously varying exponents are 
not universal (i.e. depend explicitly on the defect strength), it is essential to compare 
quantities which are calculated using the same kind of regularisation in each geometry 
connected by the conformal logarithmic map. 

Recently, the algebraic interpretation (Baake et a1 1989) of the exact solution of 
the strip Hamiltonian with arbitrary, but finite, number of defects (Henkel et a1 1989) 
has revealed non-Abelian Kac-Moody-Virasoro algebras generating the spectrum of 
these systems. In particular, appendix B of Henkel et a1 (1989) contains the conjecture 
that the generators of this algebra are connected with a subset of conformal Virasoro 
generators in the plane with a star-like defect configuration (all rays originate from 
one point in the plane). If this conjecture is correct, then spectrum levels are connected 
with the exponents of certain, specifically chosen, correlators evaluated with the 
background of the star-like defect. 
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One meets two obstacles in verifying the above conjecture. First, to our knowledge 
there is no analytic or other type of information available for correlators in such 
multi-defect systems. Second, there is no way to define a time-continuum (Hamiltonian) 
limit along any one of the defect lines. These questions make difficult any attempt to 
compare results derived in the strip with data for the above system living on the infinite 
plane. 

In this paper we investigate the gap-exponent relationship for one of the simplest 
non-trivial many-defect configurations (figure 1( a ) ) ,  where the defect lines are chosen 
along the x and y axes. 

-~ TT -Liz 

Figure 1. Defect lines in ( a )  planar geometry and ( b )  strip geometry. 

This choice best fits the square (quadratic) lattice and so minimises the finite-size 
effects. The possibility of investigating more complicated defect structures is discussed 
later. Obviously, the present test can provide evidence for the above conjecture but 
cannot provide a proof. First we shall discuss the choice of the correlation function 
best suited for the proposed test. Also, we present the spectrum of the strip transfer 
matrix for arbitrary, finite anisotropy ( J ,  f J , )  starting from the Hamiltonian 
expressions of Henkel et a1 (1989). We carefully describe the analysis of the Monte 
Carlo simulations performed with two different realisations of the defects, namely with 
both ‘line’-type and ‘ladder’-type lattice realisations. The exponents in each case are 
compared, for various values of the defect strength, with predictions from the gap- 
exponent relation. They provide good evidence for the validity of a conformal connec- 
tion between the physics of the strip and plane geometries. 

2. Correlation functions and lattice regularisation 

Consider figure l ( b ) .  The four equidistant defects with equal strengths certainly break 
translational invariance along the periodic c+-extension of the strip. The lowest excita- 
tion in the Q = 1 (spin) sector of the strip transfer matrix will dominate the behaviour 
of spin-spin correlations when the 7 distance between spins is large. In order to avoid 
contributions from eigenvalues with non-zero wavenumber, it is convenient to form 
linear combinations from the spin variables which do respect the discrete remnant of 
the translational symmetry: 

If the logarithmic connection between the strip and the plane works correctly, the 
correlation function (1 )  is mapped onto that appearing in figure 2 ( a ) .  
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There are two forms of lattice regularisation for the defects. One may either form 
‘line’ defects, where couplings between the sites on the x and y axes are shifted away 
from criticality, or one may use a one-site-wide ‘ladder’ of non-critical couplings to 
represent each defect line. In  the latter case, it is more convenient to measure 
correlations between the operator configurations appearing in figure 2( b )  where each 
factor is the average of eight spin variables. The aim is to measure the C ( r ) p l a n e  
correlators on symmetric lattices ( J ,  = [, = J,  = 0.440 687. . .), with J(defect) = K ~ J ~  for 
each defected coupling. Particularly in the case of the ladder defect model, the effect 
of the logarithmic map (from strip to plane) on the correlators is not certain. For 
example, there will be additional finite-distance effects associated with the proximity 
of the spin operators to the special point where the defects intersect, further complicated 
in the ladder case by the finite width of the rungs themselves. 

As emphasised above, one can test the gap-exponent relationship only when the 
same regularisation is applied in each geometry. Hence, one also has to work with 
‘Euclidean’ regularisation in the strip. Starting from the Hamiltonian results of Henkel 
et a1 (1989) (J,+O, J,+co) we shall present the expression for the spectrum of the 
logarithm of the transfer operator for arbitrary finite anisotropy ( J ,  # J,). The predic- 
tions for the symmetric lattice, in particular, will be compared with the exponent data 
from Monte Carlo simulations of (1) to be presented below. 

The partition function of the most general nearest-neighbour Ising model charac- 
terised by the set of couplings { J , ( x ) ,  J T ( x ) }  can be written as 

1 +tanh J , ( x ) s ( x ) s ( x +  ?) 
1 + tanh J , ( x )  

( l + t a n h  J , ( x ) s ( x ) s ( x + c ? ) )  

In ( 2 ) ,  after rescaling each factor by an appropriate field-independent expression, one 
recognises the usual exp(Js s) Boltzmann factors. The matrix element of the transfer 
operator corresponding to ( 2 ) ,  in the spin basis I{s}), is given as 

((~’11 fx,x+4~{s}) = (IS’}/ n (1 +tanh J A I ~ +  ?)~;~;+,)I{S’I) 
I 

exp(-2J,(k~))({s’}l(+;l(sjj 

+ c exp[ -2(J,( kc?) + Jz(  l c?) ) ] ( {  s’}laiu;l{ s}) + . . . 
k # /  

(3) 

where ux and ui are Pauli matrices (to be distinguished from 6 and $ the lattice unit 
vectors). The omitted terms in the bracket [. . .] correspond to three or more flips when 
passing from the configuration {s} to {s’}. The exact representation ( 3 )  implies that 
the eigenvalues of f depend only on the set of variables {tanh J , ( x ) ,  exp ( - 2 J 7 ( x ) ) } .  

The Hamiltonian limit is defined following Fradkin and Susskind (1978) by setting 

tanh J , ( x )  = K ( H O ) ( X )  tanh J,  exp(-2J,(x)) = K ( H T ) ( x )  exp(-2J7) (4) 
with the homogeneous scaling factors tanh J,  and exp( -2J,), which obey the relation 

A tanh J, = exp( -25,). 

Choosing 

and for the temporal lattice spacing 

a, = tanh J ,  (7) 
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one arrives at the Hamiltonian operator of the time-continuum limit 

The critical Hamiltonian with defects is reached when A = 1 and only a finite number 
of the defect strengths {K:’, K(HI’} are different from unity. K:) corresponds to ladder- 
type and K(HI’ to line-type defects. The eigenvalues of the Hamiltonian depend on the 
defect strengths. 

The important observation is that, for the Ising model, one is able to reconstruct 
from (8), using relations (4) and (7),  the most general transfer matrix. The higher flip 
terms of (3) are completely determined by the information in (8). Therefore, by 
replacing the K H  dependence of the eigenvalues of (8) by the relations (4) at A = 1, 
we find the critical spectrum for finite anisotropy too. This point can be explicitly 
illustrated by the following example. 

(i) Substituting the bulk Hamiltonian critical point A = 1 into ( 5 ) ,  one finds the 
exact condition for criticality in the homogeneous system ( K r ’  = K(HI’ = 1) for arbitrary 
finite anisotropy ( J ,  # J,). 

(ii) In the case of a single defect (either K F ’ ( 1 , )  f 1 or K(H’(1,) # 1 on the defect 
bonds 1,) Peschel and Schotte first found the 7 exponent for spin-spin correlations 
in the Hamiltonian limit (Peschel and Schotte 1984). They also observed that, by the 
replacement (4), the general results of Bariev (1979) and of McCoy and Perk (1980) 
are recovered. 

The above arguments allow us to write down the generalisation to finite anisotropy 
of the Hamiltonian result of Henkel et a1 (1989) for four equidistant defects of equal 
strength. The exponents at some value of K H  are given in (2.11) of this paper. We 
note that, at least for up to four defects, the Hamiltonian spectrum is identical for the 
line and ladder defect models. We have verified this by repeating, for the line defect, 
the exact solution of the ladder case presented by Henkel er al. For the case of four 
defects, the dominant exponent in the ( Q  = 1)  spin sector is given as a function of K H  

by (cf equations (2.111, (1.5), (2.17) and (2.18) of Henkel et a1 (1989)) 

(9) x = {A: + A: - 2Ai}  - 2A,  + 1 

where the A ,  are given by 

(Note that, in this normalisation, xlslng = Q). The exponents at arbitrary anisotropy 
{Jc, J,} are then given by (9), (10) with the Hamiltonian defect strengths K E ) ,  K ( H ~ )  
being replaced by functions of the ‘Euclidean’ quantities Kp’, a;’ as implied by (4), 
i.e. 

tanh( K P ’ J , )  

tanh J, K:)= ladder 

exp(-2K‘;)J7) 
e XP ( - 2 J ,  ) 

line. 
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3. Numerical procedures and results 

We performed substantial simulations of the critical Ising model with the star-shaped 
line and ladder defects described above. A sequence of finite L x L lattices ( L  = 8, 16, 
24, 32, 48) with periodic boundary conditions was used and sample defect strengths 
K~ = q ,  2 ,  and 1 (homogeneous Ising) investigated. The simulation method was based 
on the spin-coded Metropolis algorithm of Bhanot et a1 (1986) but with an  improved 
stochastic decision list structure (Michael 1986). The idea is that update acceptance 
decisions are made with the correct probabilities e x p ( J A 2 )  by drawing bit patterns 
randomly from large lists containing carefully chosen multiplicities of each pattern 
and  comparing with the bit representation of the integer A%. Since these multiplicities 
and  the total list population are obviously integers, the probabilities which can be 
represented (as ratios of these integers) are discretised. In  turn, this means that the 
couplings at which simulations can take place are discretised. The longer the decision 
list, the more closely can one approach a desired coupling value using an optimal 
choice of pattern multiplicities. The algorithm was further enhanced to deal with a 
spin Hamiltonian involving multiple coupling. In this case, the Metropolis update 
acceptance probability is a function of 

1 1 3  

JAR= JARh+ KJAX,, (13) 

and  so extra stochastic decision lists are required to deal with updates affecting the 
homogeneous (h )  and defected (d)  bond contributions to the change in the total spin 
Hamiltonian. For the line (ladder) defect case a total of three (five) separate decision 
lists are required. As in the basic algorithm, the couplings J and K at which simulations 
may be performed are discretised. The choice of these is as indicated in table 1. 
Typical update speeds of 10' spins per second were achieved on serial processors of 
modest power for defected and undefected models alike. 

Correlation measurements C (  r )  and effective exponents defined by 

were made only after every so many (Ndccorr) sweeps in order to decorrelate the 
measurements in computer time. Variances were calculated from the 32 (=number  of 
bits/word) independent lattices simulated in parallel. Tests were made to determine 
the optimal value of Ndecorr which showed correct scaling of the variances with sample 

Table 1. Comparison of predicted ( see  equations (9 ) - (11 ) )  and  measured exponents for 
line and  ladder  defect models 

Defect type K b  Predicted Measured 

none 1 .0 0.125 0.125 = 0.001 

line 0.749 469 0.206 987 0.203 r 0.003 
line 0.499 186 0.305 695 0.30dr0.016 
line 0.249 464 0.408 932 0.43 i 0.07 

ladder 0.766 383 0.226 252 0.226r0.012 
ladder 0.520 779 0.404 725 0.40 r 0.05 
ladder 0.262 274 0.674 628 0.52r0.10 
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size but which minimised the relatively expensive ratio of measurement to update time. 
Most of the data was obtained with NdecOrr= 200 and involved typically 10” spin 
updates on each lattice size and at each set of couplings. For computational efficiency, 
the update algorithm was coded entirely in Boolean operations and was such that the 
pure Ising limit was achieved in a non-trivial way. This allowed a stringent test of the 
code in both line and ladder defect cases. 

Assuming a single dominant exponent (9), one expects the correlation behaviour 
at large separation r to be 

and xeff( r )  to be asymptotically constant (=x) .  All correlations and exponents, however, 
showed appreciable finite size effects; at fixed L, xeff(r) was approximately constant 
only within some range of r (which, however, increased with L ) .  At fixed r, the effective 
exponent increased smoothly with L, so offering the possibility of a finite-size extrapola- 
tion, This was achieved using the methods of Beleznay (1986) which allow one, in 
principle at least, to estimate both the convergence exponent and the error on the final 
extrapolated value. Using high statistics homogeneous Ising model correlation data 
for lattices of size L = 8-48, we found a convergence exponent a - - 1. For the strongly 
defected lattices, the effective convergence exponent was closer to -;. The errors 
quoted below include the uncertainty due to the extrapolation method?. Operator 
separations ( r )  between 2 and 4 were used to obtain the data presented and separations 
up to 6 to check the approximate constancy of the extrapolated exponents x. Although 
the noise in the larger-r data reduced its value, the consistency of the data provided 
some evidence that a single exponent dominates this choice of correlator, at least in 
the line-defect model. 

The choice of site for the inner operators (see figure 2(a))  was determined by two 
observed effects. For a fixed separation r, the relative error on the exponent x e f f ( r )  
(equation (14)) decreased as the inner operators (circles in figure 2) moved closer to 
the defect intersection. For example, at r = 3 on a 24 x 24 lattice with a line defect of 
strength K =0.749, the relative error was twice as large when inner operators were 
three lattice units away from the defect intersection as compared with operators on 
the intersection itself. This last choice corresponds to the point T = --CO in the strip 
geometry. The second effect was that finite-size effects were considerably more severe 
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Figure 2. Correlation measurements in planar geometry for ( a )  line defects and ( b )  ladder 
defects. Open circles (crosses) are the images of those forming the operator S(T = - T )  
(S(T= T ) )  and r is the operator separation in lattice units. 

t Cardy has predicted (Cardy 1986a, 1986b) an asymptotically logarithmic finite-size correction. At the 
values of L explored (generally up to 32), the finite-size corrections measured appear stronger than this. 
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for less-central choices of inner operator. The bulk of the data was therefore obtained 
with the most symmetric and central choice. After finite-size extrapolation, the other 
choices lead to exponent values which were compatible within the somewhat larger 
errors. A similar effect was observed with the ladder defect model. The most reliable 
numerical results were obtained by using operators (see figure 2 (  6 ) )  corresponding to 
the pairs of spins on each end of a ladder ‘rung’. The final results are displayed in 
table 1. 

4. Discussion and conclusions 

The predicted and measured spin exponents for the symmetric lattice are in good 
agreement for the homogeneous Ising model itself and for its variant containing four 
line defects. When the defects are strong ( K < i), and in particular for the ladder defect 
model, the poorer accuracy of the data obscures the comparison. A thoroughly reliable 
test in the ladder case probably requires the distance of the inner spins from the 
crossing square to be much larger than the width of the ladder itself. The size of 
lattices and  the statistics realistically accessible for this study did not permit us to fulfil 
this condition. However, at least for moderate defect strengths, the comparison provides 
evidence that the gap-exponent relation is satisfied for both models of the defects. 

Access to larger lattices would also allow tests of more complicated defect structures 
with non-rectangular intersections and/or multiplicities greater than four. In the 
continuum limit, the step-wise representation of such defects on a quadratic lattice 
should be adequate and  the finite-size effects kept sufficiently under control. In this 
way we would expect to verify the gap-exponent relation for defect angles which are 
arbitrary but subject to the commensurability condition of Henkel et a1 (1989). 

The present successful comparison completes the analysis of defected Ising systems 
in terms of Kac-Moody-Virasoro algebras initiated by Henkel and Patkos (1987a, 
1987b) and developed by Henkel et a1 (1989) and Baake et a1 (1989). Although 
conclusive proof is still lacking, it does represent a non-trivial positive argument that 
the generators of the Hamiltonian spectrum of the strip are connected with a subset 
of the conformal generators in the plane even in the presence of multiple defects. 
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