Critical synchronization dynamics of the Kuramoto model on connectome and small world graphs

Géza Ódor MFA Complex Systems, Budapest Jeffrey Kelling HZDR Dresden, Róbert Juhász, Wigner FK Budapest

Theoretical research and experiments suggest that the brain operates at or near a critical state between sustained activity and an inactive phase, exhibiting optimal computational properties (see: *Beggs & Plenz J. Neurosci. 2003; Chialvo Nat. Phys. 2010; Haimovici et al. PRL 2013*)

Individual neurons emit periodic signals (Y. Penn et al PNAS 113 (2016) 3341)

→ Criticality at the **synchronization transition critical point**

Why would be brain near criticality ?

Pros:

Diverging fluctuations \rightarrow High sensitivity to stimuli

Diverging correlation functions → Optimal transmission and storage of information

Maximal information processing and computational performance

Cons: Tuning to critical point

Self-organized critical mechanism ?

Kuramoto oscillator model (1975)

Kuramoto Oscillators

$$\dot{\theta}_i(t) = \omega_{i,0} + K \sum_j W_{ij} \sin[\theta_j(t) - \theta_i(t)]$$

phases $\theta_i(t)$

global coupling K is the control parameter weighted adjacency matrix W_{ij}

 $\omega_{i,0}$ is the intrinsic frequency of the *i*-th oscillator,

$$R(t) = \frac{1}{N} \left| \sum_{j=1}^{N} e^{i\theta_j(t)} \right|$$

Order parameter : average phase:

 $R(t \to \infty) > 0$ for $K > K_{c'}$, $R(t \to \infty) = 0$ for $K \le K_c$ as $R \propto (1/N)^{1/2}$ Exhibits an initial growth: $R(t,N) = N^{-1/2} t^{\eta} f_{\uparrow}(t/N^{\tilde{z}})$ for incoherent initial state

Critical synchronization transition for D > 4 spatial dimensions, which is mean-field like: i.e. $D \rightarrow \infty$ (full graph)

The dynamical behavior suffers very strong corrections to scaling and chaoticity, see:

Róbert Juhász, Jeffrey Kelling and Géza Ódor: Critical dynamics of the Kuramoto model on sparse random networks J. Stat. Mech. (2019) 053403

Growth of synchronization on sparse, synthetic small-world networks

2D lattices of linear size L = 6000, periodic boundary conditions, + extra random long link between connecting any edges: $\langle k \rangle = 5$, 90.000.000 edges

Growth runs from random initial state Runge-Kutta-4 parallelized for GPUs Maximum time: $t_{max} = 1000$,

average over: 10000 independent ω_i realizations

Critical point located at K=0.4773Critical exponent: $\eta = 0.55$ (10)

Determination of the characteristic time exponent τ_t

10-1

What do we know about neuron networks?

The largest precisely explored structural networks contains ~302 neurons (C. Elegans) (very recently fruit fly map is reported)

Connectomes, obtained by approximative methods like diffusion MRI contain < 10⁶ nodes (voxels)

Recently DMRI tractrography was confirmed by tract-tracing in ferret

Open Connectome Large Human graphs

Diffusion and structural MRI images with 1 mm^3 voxel resolution : $10^5 - 10^6$ nodes

Hierarchical modular graphs

Top level: 70 brain region (Desikan atlas)

Lower levels: Deterministic tractography: Fiber Assignment by Continuous Tracking (FACT) algorithm

Map : voxel \rightarrow vertex (~ 10⁷)

fiber \rightarrow edge (~ 10¹⁰)

+ noise reduction \rightarrow graph

undirected, weighted

SCIENTIFIC **Reports**

OPEN The topology of large Open Connectome networks for the human brain

Michael T. Gastner^{1,2} & Géza Ódor²

The structural human connectome (i.e. the network of fiber connections in the brain) can be analyzed at ever finer spatial resolution thanks to advances in neuroimaging. Here we analyze several large data sets for the human brain network made available by the Open Connectome Project. We apply statistical model selection to characterize the degree distributions of graphs containing up to $\simeq 10^6$ nodes and $\simeq 10^8$ edges. A three-parameter generalized Weibull (also known as a stretched exponential) distribution is a good fit to most of the observed degree distributions. For almost all networks, simple power laws cannot fit the data, but in some cases there is statistical support for power laws with an exponential cutoff. We also calculate the topological (graph) dimension *D* and the small-world coefficient σ of these networks. While σ suggests a small-world topology, we found that D < 4 showing that long-distance connections provide only a small correction to the topology of the embedding three-dimensional space.

Small world, still finite dimensional, non-scale free, universal modular graphs

Received: 18 December 2015

Accepted: 12 May 2016

Published: 07 June 2016

SCIENTIFIC REPORTS 6:27249 DOI: 10.1038/srep27249

Kuramoto solution for the KKI-18 graph with *N*= *836 733* nodes and *41 523 931* weighted edges

The synchronization transition point determined by growth as before KKI-18 has $D = 3.05 < 4 \rightarrow$ No real phase transition, crossover Due to the fat-tailed link weight distribution, incoming weight normalization is applied:

$$W'_{i,j} = W_{i,j} / \sum_{j \in \text{neighb.of } i} W_{i,j}$$

 $K_c = 1.7$ and growth exponent: $\eta = 0.6(1)$

Duration distribution for the KKI-18 graph

Measure characteristic times t_x of first

dip below: $R_c = (1/N)^{1/2}$

average over: 10.000 independent ω_i realizations

Histogramming of t_x at the critical point

Critical exponent: $\tau_t = 1.2$ (1)

obtained by fitting for the PL tails

Below the transition point : K < 1.6non-universal power laws in the range of experiments of activity durations : $1.5 < \tau_t < 2.4$ (*Palva et al 2013*)

Inhibitory (negative) links

Inhibitions: 20% of **links**: $w_{ij} \rightarrow -w_{ij}$ randomly

 K_c increases to 1.9(1), but $\eta = 0.6(1)$ remains the same, and below it:

Duration scaling exponent within experimental range: $1.5 < \tau_t < 2.4$ *J.M. Palva et al PNAS 110 (2013) 3585*

Inhibitory nodes

Inhibitions: 5% of **nodes**: $w_{ii} \rightarrow -w_{ii}$ randomly

Figure 9. Duration distribution of t_x on the *KKI-18-I* model in case of 5% inhibitory node assumption for K = 1.35 (+), K = 1.45 (bullets), 1.55 (boxes), 1.75 (triangles). The dashed line shows PL fits to the tail region: $t_x > 20$.

 $K_c = 1.7(1)$ and $\eta = 0.6(1)$ remains the same. Sub-critically:

Duration scaling exponent within experimental range: $1.5 < \tau_t < 2.4$ *J.M. Palva et al PNAS 110 (2013) 3585*

Galilean invariance of the Kuramoto model with respect to the ω_i distribution

Brain experiments: $\omega_i > 0$ distributions are narrow: $\sigma_i \sim 0.02$ and have mean value: $\langle \omega_i \rangle \sim 0.05$

$$\dot{\theta}_i(t) = \omega_{i,0} + K \sum_j W_{ij} \sin[\theta_j(t) - \theta_i(t)]$$

 $\langle \omega_i \rangle \neq 0$ can be gauged out by a rotating coordinate system

Rescaling of ω_i as : $\omega_i \rightarrow a\omega_i' \quad t \rightarrow (1/a) t' \quad K \rightarrow a K'$

Existing results can be transformed for later times and weaker couplings

Conclusions

Heterogeneity effects are considered on large connectomes and random small-world graphs

This enables us to distinguish from finite size rounding effects

Large OCP graphs show: ~ degree distribution universality, finite Dimensionality and small-worldness

For Erdős-Rényi : Mean-field dynamical scaling with ugly corrections New method to determine crossover to synchronization and τ_t

Below the transition point non-universal scaling of phase synchronization "Frustrated synchronization" ~ Griffiths Phase ?

Durations, with exponents agreeing in vivo activity experiments for humans

Effects of inhibitory links, nodes

Invariance with respect to frequency distributions

Insensitivity for additive Gaussian noise

G.Ó and J. K, arXiv:1903.00385, accepted in Scientific Reports

Explanations for tuning to criticality

$SOC \leftrightarrow GP$ do not exclude each other

For SOC we need a responsible feedback mechanism,

GP can occur spontaneously in heterogeneous systems

GP ~ Frustrated synchronization

OPEN CONNECTOME PROJECT

Freely downloadable images and graphs of humans and animals: https://neurodata.io.

OCP graph dimension measurements

Breadth-first search algorithm from each vertex

10[°] (KI2009-18 3.05(5) KI2009-10 10⁵ KI2009–11 KKI2009-42 10⁴ z 3 10³ ^{ة 2} 10² 0 0.2 0.3 0.1 0 1/r 10¹ L_____ 10⁰ 10¹ 10² r $N_r \sim r^D$ $D_{eff} = d \ln(N_r) / d \ln r$

D < 4

OCP graph analysis

Degree distribution : scale-free ? Maximum likelihood method

$$\mathscr{L}(\mathbf{v}) = \prod_{i=1}^{N} \Pr(k_i, \mathbf{v}).$$

Akaike information theory model selection:

$$AIC_c = -2\ln(\mathscr{L}(\hat{\mathbf{v}})) + 2K + \frac{2K(K+1)}{N-K-1}$$

 v_1, v_2, \dots, v_K parameters, maximizing \mathcal{L}

Best model : stretched exponential, with ~ universal exponent

Kuramoto model on the random Erdős-Rényi graph, desynchronization

Figure 7. Effective decay exponents $\delta_{\text{eff}}(t)$ as a function of time obtained numerically in the ER graph (k = 1) combined with a 2d lattice, for different values of K and sizes N = 6000 (thin lines) and $N = 10\,000$ (thick lines). The dashed horizontal line indicates the asymptotic value $\delta = 1/2$ of the mean-field universality class, while the vertical line shows the estimated cutoff time for the larger size.

Runge-Kutta-4 GPU solution for zero centered ω_i of unit variance Decay of R(t) near the critical point for different sizes Mean-field behavior + non-monotonic corrections to scaling (?)

OCP small world coefficient

$$\sigma = \frac{C/C_r}{L/L_r}$$

 $C^{\Delta} = \frac{\text{number of closed triplets}}{\text{number of connected triplets}}$

$$L = \frac{1}{N(N-1)} \sum_{j \neq i} d(i,j) , \qquad L_r = \frac{\ln(N_l) - 0.5772}{\ln\langle k \rangle} + 1/2$$

KKI	N	Nedges	$\langle k \rangle$	L	L_r	C ^w	C^{Δ}	C _r	σ^{W}	σ^{Λ}
10	9.40×10^{5}	8.68×10^{7}	184.71	11.38	3.02	5.94×10^{-1}	3.20×10^{-1}	1.97×10^{-4}	803.26	433.09
11	8.63×10^{5}	7.07×10^{7}	163.84	12.25	3.07	5.99×10^{-1}	3.24×10^{-1}	1.90×10^{-4}	789.23	427.69
12	7.44×10^{5}	4.98×10^{7}	133.79	13.91	3.14	6.02×10^{-1}	3.58×10^{-1}	1.80×10^{-4}	757.12	450.43
13	8.46×10^{5}	5.93×10^{7}	140.17	12.96	3.14	6.02×10^{-1}	3.56×10^{-1}	1.66×10^{-4}	881.74	521.58
14	7.70×10^{5}	5.36×10^{7}	139.10	13.10	3.13	6.01×10^{-1}	3.62×10^{-1}	1.81×10^{-4}	794.64	478.99
15	8.47×10^{5}	6.94×10^{7}	163.84	12.80	3.06	5.99×10^{-1}	3.32×10^{-1}	1.94×10^{-4}	740.79	411.13
16	7.60×10^{5}	5.70×10^{7}	150.11	12.03	3.09	6.02×10^{-1}	3.38×10^{-1}	1.98×10^{-4}	782.48	438.63
17	7.87×10^{5}	5.20×10^{7}	132.29	13.00	3.16	6.02×10^{-1}	3.73×10^{-1}	1.68×10^{-4}	869.74	529.15
18	8.49×10^{5}	6.63×10^{7}	156.21	11.30	3.09	5.98×10^{-1}	3.58×10^{-1}	1.84×10^{-4}	888.09	531.35
19	7.31×10^{5}	4.94×10^{7}	134.99	13.17	3.14	6.02×10^{-1}	3.59×10^{-1}	1.85×10^{-4}	775.96	462.90

Table 4. Summary of small-world properties for the studied KKI graphs. N, N_{edges} : number of nodes and edges. $\langle k \rangle$: mean degree. L: average shortest path length. L_r : expectation value for the average shortest path length in Erdős-Rényi graphs with the same N and N_{edges} . C^W , C^{Δ} : clustering coefficients defined by Eq. 10 and 11, respectively. C_r : mean clustering coefficient in Erdős-Rényi graphs. σ^W , σ^{Δ} : small-world coefficient defined by Eq. 9, based on either C^W or C^{Δ} .

Finite graph dimension \leftrightarrow small world network ($\sigma > 1$)

The effect of additive stochastic noise

Gaussian distributed annealed noise is added:

$$\dot{\theta_i}(t) = \omega_{i,0} + K \sum_j W_{ij} \sin[\theta_j(t) - \theta_i(t)] + s\xi(i)$$

Negligible effect:

