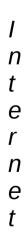
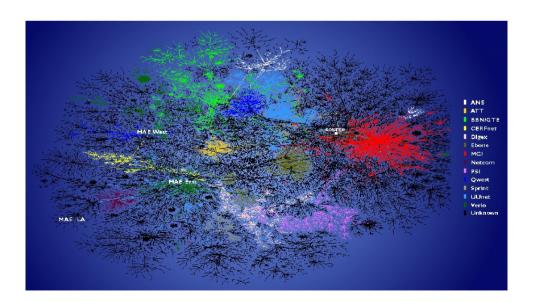
Slow dynamics of the contact processes on complex networks

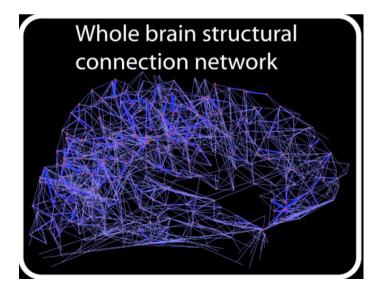
Géza Ódor

RESEARCH INSTITUTE FOR NATURAL SCIENCES (MFA) BUDAPEST

- Exploration of complex networks is flourishing since ~2000 (Barabási & Albert)
- Dynamical systems living on networks are of current interest
- Origin of slow (dynamic) scaling behavior in internet, brain, quantum systems,... etc.
- Open question : Complex networks + quenched disorder ?



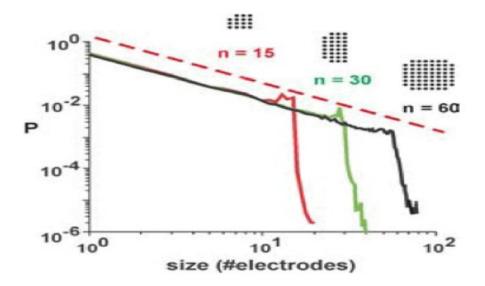




Diffusion spectrum imaging

Observed slow dynamics in networks

• Brain : Size distribution of neural avalanches G. Werner : Biosystems, 90 (2007) 496,



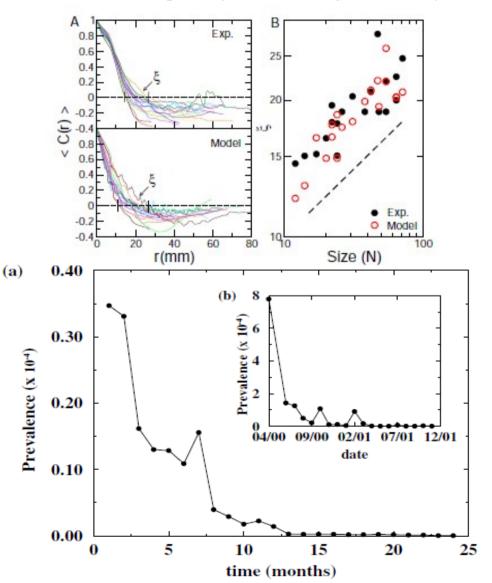
• Internet: worm recovery time is slow:

Small world networks \rightarrow fast dynamics

What is the cause ?

Correlation length ($\boldsymbol{\xi}$) diverges

Tagliazucchi & Chialvo (2012) : Brain complexity born out of criticality.



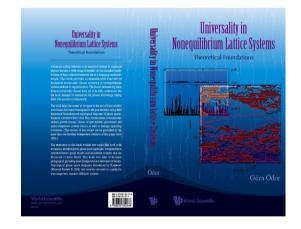
Slow dynamics, scaling in nonequilibrium

Scaling and universality classes appear in complex system due to : $\xi \to \infty$ i.e. near critical points

Basic models classified by universal scaling behavior G. Ódor: Universality in nonequilibrium system (World Scientific 2008), Rev. Mod. Phys. 2004

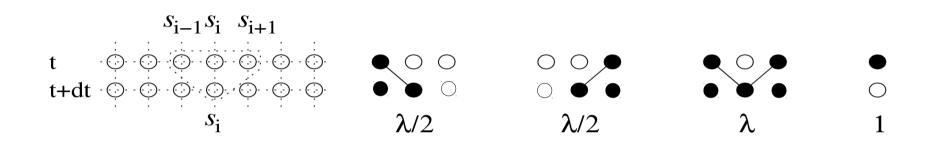
- Why don't we see universal behavior in networks ?
- Tuning to critical point is needed !

I'll show a possible way to understand this

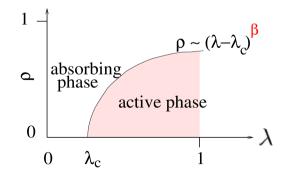


Modelling dynamics on fundamental (nonequilibrium) models

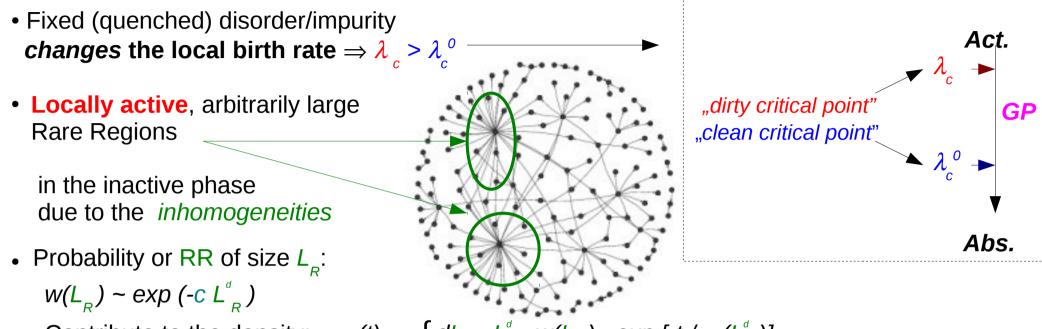
Prototype: Contact Process describing "epidemic/info" propagation (1d) :



- In regular, Euclidean lattices: order parameter: ρ the density of active sites phase transition between active and inactive (absorbing) Critical point : $\lambda_c > 0$
- Exhibits scaling behavior belonging to the DP universality class, still rarely observed in nature
- Sensitivity to spatially/temporal (quenched) disorder \rightarrow The scaling behavior is **slow, non-universal**



Rare Region argument for **Q-disordered** CP



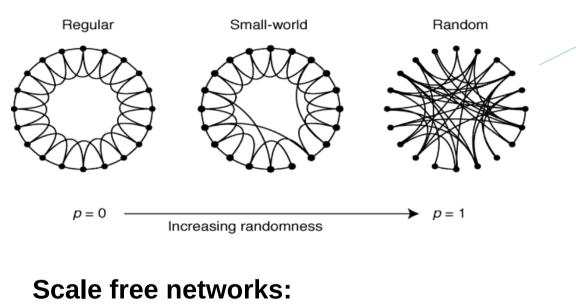
Contribute to the density: $\rho(t) \sim \int dL_R L_R^{d} w(L_R) \exp[-t / \tau (L_R^{d})]$

- For $\lambda < \lambda_{c}^{0}$: conventional (exponentially fast) decay
- At λ_c^0 the characteristic time scales as: $\tau (L_R) \sim L_R^{-Z} \Rightarrow$ saddle point analysis: $\ln \rho (t) \sim t^{d/(d+Z)}$ (stretched exponential)
- For $\lambda_c^0 < \lambda < \lambda_c$: $\tau (L_R) \sim exp(b L_R)$: \Rightarrow saddle point analysis: $\rho(t) \sim t^{-c/b}$

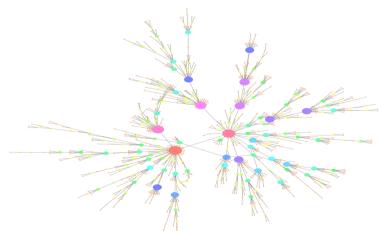
• At λ_{c} Ultra slow time dependences : $\rho(t) \sim ln(t)^{-\alpha}$

Griffiths Phase (continuously changing exponents)

Basic network models



From regular to random networks:



Erdős-Rényi (p = 1)

Degree (k) distribution in $N \rightarrow \infty$ node limit: $P(k) = e^{-\langle k \rangle} \langle k \rangle^{k} / k!$

Topological dimension: $N(r) \sim r^{d}$ Above perc. thresh.: $d = \infty$ Below percolation d = 0

Degree distribution:

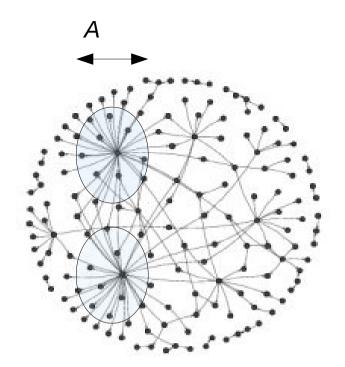
 $P(\mathbf{k}) = \mathbf{k}^{-\gamma} (2 < \gamma < 3)$

Topological dimension: d = ∞ Example: Barabási-Albert lin. prefetential attachment

Focus on dynamical systems living on networks: Fast dynamics is expected

Networks: fast dynamics, mean-field behavior expected

Effect of disorder: Rare active regions in the absorbing phase: $\tau(A) \sim e^A$ \rightarrow slow dynamics (Griffiths Phase) ?

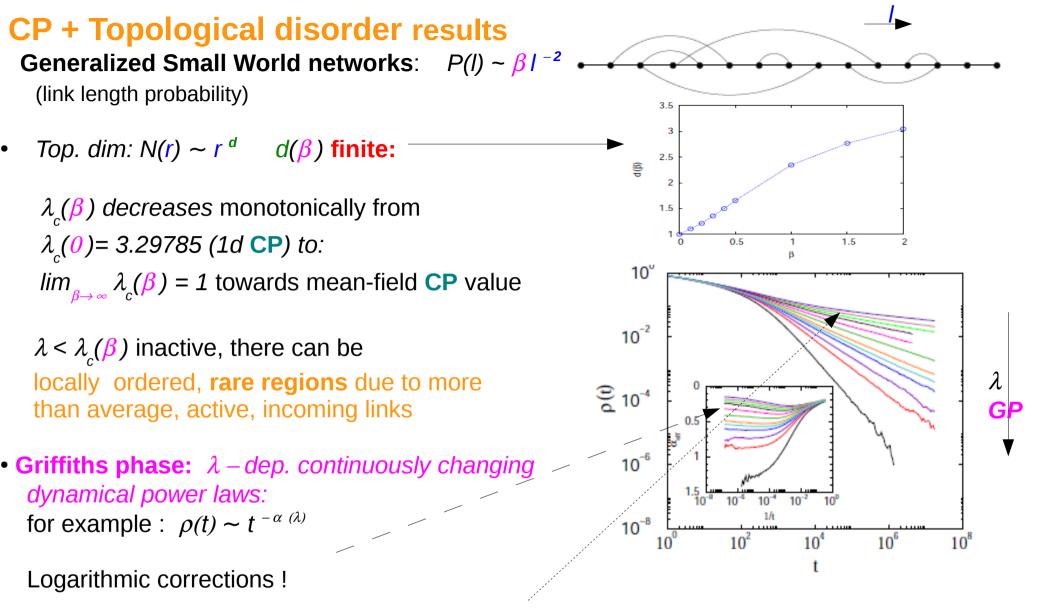


M. A. Munoz, R. Juhász, C. Castellano and G. Ódor, PRL 105, 128701 (2010)

- **1.** Inherent disorder in couplings
- 2. Disorder induced by topology

Optimal fluctiation theory + simulations:

- In Erdős-Rényi networks below the percolation threshold
- In generalized small-world networks for finite topological dimension



- **Ultra-slow** ("activated") scaling: $\rho \propto \ln(t)^{-\alpha} \operatorname{at} \lambda_{c}$
- As $\beta \rightarrow 1$ Griffiths phase shrinks/disappears

FIG. 3: Density decay in Benjamini-Berger networks with s = 2 and $\beta = 0.2$ for different values of λ (from top to bottom: 2.81, 2.795, 2.782, 2.77, 2.75, 2.73, 2.71, 2.70, 2.69, 2.67, 2.65, 2.6). Straight lines lie in the Griffiths phase. Inset: Corresponding effective exponents, illustrating the **K** sence of corrections to scaling.

• Same results for cubic, regular random networksence of corrections to scaling. higher dimensions

Contact process on Barabási-Albert (BA) network

• Heterogeneous mean-field theory: conventional critical point, with linear density decay:

 $\rho(t) \sim [t\ln(t)]^{-1},$

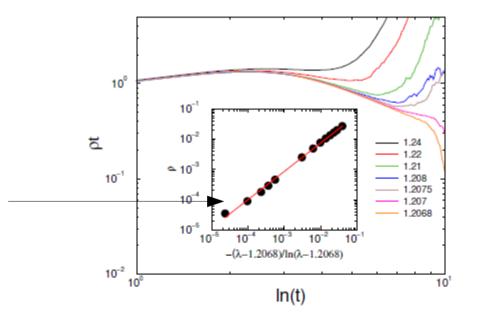


FIG. 1. Density decay $(t\rho(t))$ as a function of $\ln(t)$ for the CP on unweighted looped BA networks with m = 3of size $N = 8 \times 10^7$. The different curves correspond to $\lambda = 1.2068, ..., 1.24$ (bottom to top). Inset: Steady state density, showing agreement with HMF theory scaling. The full line shows a power-law fitting to the data points in the form $-0.36(5)x^{0.98(2)}$.

with logarithmic correction

- Extensive simulations confirm this
- No Griffiths phase observed
- Steady state density vanishes at $\lambda_c = -1$ linearly, HMF: $\beta = 1$

CP on Barabási-Albert trees hunt for GP-s, by slowing the propagation

- Lack of loops slows propagation
- For $\langle k \rangle = 3 : \lambda_c > 0$

Weighted networks: $\omega_{ij} = \omega_0 (k_i k_j)^{-\nu}$ $\omega_{ij} = \frac{|i - j|^x}{N}$

Strong size corrections

Non mean-field transition :

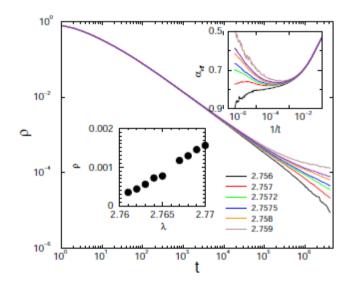


FIG. 1: Density decay in a pure BA CP model, m = 1, $m_0 = 10$, $N = 4 \times 10^7$ for $\lambda = 2.756$, ..., 2.759 (bottom to top). Right insert: the corresponding effective exponents. Left insert: steady state density in the active phase.

Power-laws for: x = 2,3

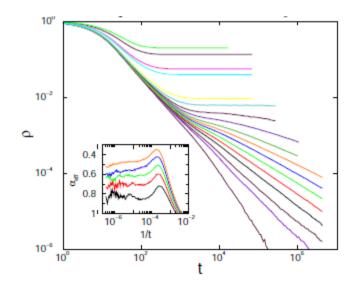
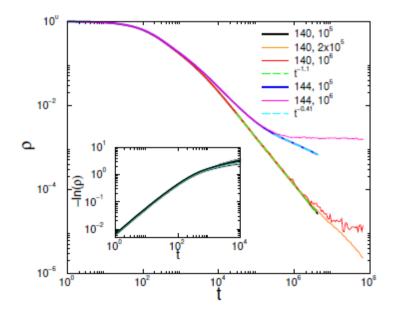


FIG. 5: Density decay in model B m = 1, $m0_{=}20$, $N = 10^{5}$ for $\lambda = 6.8, ..., 15$ (top to bottom). Inset: corresponding local slopes in the GP region.

Heterogeneous mean-field theory: critical point, with linear density decay: $\rho \mu 1/t$ can't describe frozen disorder !

Do power-laws survive the thermodynamic limit ?

• Finite size analysis shows the disappearance of a power-law scaling:



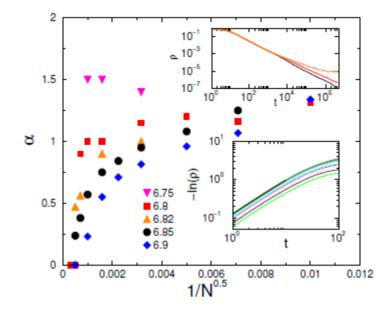


FIG. 5. Density decay as a function of time $\rho(t)$ for the CP on weighted BA trees with a multiplicative weighting scheme (WBAT-I) with exponent $\nu = 1.5$. Plots correspond to two sets of λ (upper branch: $\lambda = 144$, lower branch $\lambda = 140$) at different network sizes N. Dashed lines represent PL fittings. Inset: Initial time region of the same data, showing an stretched exponential behavior.

FIG. 8. Finite-size scaling analysis of the density decay exponent for $\lambda = 6.75$ (triangles), $\lambda = 6.8$ (boxes), $\lambda = 6.82$ (triangles), $\lambda = 6.85$ (bullets), $\lambda = 6, 9$ (rhombes) in the CP on weighted BA trees with a age-dependent weighting scheme (WBAT-II) with exponent x = 2. Top inset: $\rho(t)$ for $\lambda = 6.82$ ($N = 10^6$, $N = 4x10^5$, $N = 10^5$ top to bottom). Bottom inset: Initial time density.

Smeared phase transition: power-law → saturation:
 Rare sub-spaces, but infinite dimensional ?

Percolation analysis of the weighted BA tree

We consider a network of a given size N, and delete all the edges with a weight smaller than a threshold ω_{th} .

For small values of ω_{th} , many edges remain in the system, and they form a connected network with a single cluster encompassing almost all the vertices in the network. When increasing the value of ω_{th} , the network breaks down into smaller subnetworks of connected edges, joined by weights larger than ω_{th} .

The size of the largest ones grows linearly with the network size N

 \leftrightarrow standard percolation transition.

These clusters, which can become arbitrarily large in the thermodynamic limit, play the role of correlated **RR**s, sustaining independently activity and smearing down the phase transition.

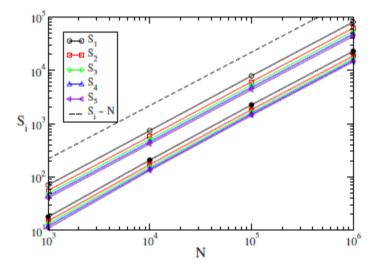


FIG. 6. Size S_i of the 5 largest clusters in a percolation analysis of the WBAT-I model with $\nu = 1.5$ for $\omega_{\rm th} = 100\omega_{\rm min}$ (hollow symbols) and $\omega_{\rm th} = 1000\omega_{\rm min}$ (full symbols), where $\omega_{\rm min}$ is the minimum weight in the network. The size of all components grows linearly with network size N, and is therefore infinite in the thermodynamic limit.

Summary

- Quenched disorder in complex networks can cause slow dynamics : Rare-regions → (Griffiths) phasess → no tuning or self-organization needed !
- In finite dim. (for CP) GP can occur due to topological disorder
- In *infinite dim*, scale-free, BA network mean-field transition of CP with logarithmic corrections (HMF+simulations)
- In BA trees non mean-field transition observed
- In weighted BA trees non-universal, slow, power-law dynamics can occur for finite N, but in the $N \rightarrow \infty$ limit saturation is observed
- Smeared transition can describe this, percolation analysis confirms the existence of arbitrarily large dimensional sub-spaces with (correlated) large weights
- Acknowledgements to : HPC-Europa2, OTKA, Osiris FP7

[1] M. A. Munoz, R. Juhasz, C. Castellano, and G, Ódor, Phys. Rev. Lett. 105, 128701 (2010)
[2] G. Ódor, R. Juhasz, C. Castellano, M. A. Munoz, AIP Conf. Proc. 1332, Melville, New York (2011) p. 172-178.
[3] R. Juhasz, G. Ódor, C. Castellano, M. A. Munoz, Phys. Rev. E 85, 066125 (2012)
[4] G. Ódor and Romualdo Pastor-Satorras, Phys. Rev. E 86, 026117 (2012)