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Slow, bursty dynamics as a consequence of quenched network topologies

Géza Ódor
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Bursty dynamics of agents is shown to appear at criticality or in extended Griffiths phases, even in case of
Poisson processes. I provide numerical evidence for a power-law type of intercommunication time distributions
by simulating the contact process and the susceptible-infected-susceptible model. This observation suggests that
in the case of nonstationary bursty systems, the observed non-Poissonian behavior can emerge as a consequence
of an underlying hidden Poissonian network process, which is either critical or exhibits strong rare-region effects.
On the contrary, in time-varying networks, rare-region effects do not cause deviation from the mean-field behavior,
and heterogeneity-induced burstyness is absent.

DOI: 10.1103/PhysRevE.89.042102 PACS number(s): 05.70.Ln, 89.75.Hc, 89.75.Fb

I. INTRODUCTION

The dynamics of systems with general network commu-
nications has been an interesting topic of various models
and empirical observations [1,2]. In networks with large
topological dimension defined as N ∝ rD , where N is the
number of nodes within the (chemical) distance r , the evolution
is expected to be exponentially fast. A generic, slow power-
law type of dynamics is reported in [3–8]. In social and
neural networks, the occurrence of generic slow dynamics
was suggested to be the result of non-Poissonian, bursty
behavior of agents [9] connected by small-world networks
[6,10–12]. Times between contacts [13] or communication
[14,15] between individuals was found to deviate from a
Poisson process, namely an intermittent switching between
periods of low activity and high activity, resulting in fat-tailed
intercommunication time distributions [16].

On the other hand, arbitrarily large rare regions (RRs)
that can change their state exponentially slowly as a function
of their sizes can cause the so called Griffiths phase (GP)
[17,18], in which slow, nonuniversal power-law dynamics
occurs [19]. It has been shown [19–21] that GPs can emerge
as a consequence of purely topological disorder. However,
this has been found only in finite-dimensional networks, or
in weighted treelike networks for an extended time window
[22–24].

Griffiths singularities affect the dynamical behavior both
below and above the transition point and can best be described
via renormalization-group methods in networks [25–27]. GPs
were shown by optimal fluctuation theory and simulations of
the contact process (CP) [28,29] on Erdős-Rényi (ER) net-
works [30] and on generalized small-world (GSW) networks
[31–33].

The susceptible-infected-susceptible (SIS) model [34] is
another fundamental system to describe simple epidemic (in-
formation) -possessing binary site variables: infected (active)
or healthy (inactive). Infected sites propagate all of their
neighbors the epidemic (or the activation) with rate λ or recover
(spontaneously deactivate) with rate 1. SIS differs from the CP
in which the branching rate is normalized by k, the number
of outgoing edges of a vertex, thus it allows an analytic treat-
ment using symmetric matrices. By decreasing the infection
(communication) rate of the neighbors, a continuous phase
transition occurs at some λc critical point from a steady state

with finite activity density ρ to an inactive one, with ρ = 0
(see [35–37]). The latter is also called absorbing, since no
spontaneous activation of sites is allowed.

Very recently it has been proposed [38] that many networks
cannot be considered quenched, but they evolve on the same
time scale as the dynamical process running on top of them.
Activity-driven network models have been introduced in which
at a given time, nodes possess only a small number (m = 2) of
edges selected via a fixed, node-dependent activity potential
Vi , which exhibits the probability distribution F (V ) ∝ V −γ .
Asymptotically, the integrated link distribution is shown to be
a scale-free (SF) network with P (k) ∝ k−γ degree distribution
[38]. In this work, I performed extensive numerical simulations
to investigate whether rare-region effects and bursty dynamics
could be observed in such networks with CP or annihilating-
random-walk (ARW) (see [36]) processes running on them.

II. BURSTYNESS IN THE CRITICAL CONTACT PROCESS

The one-dimensional (1D) critical CP was simulated on
rings of size N = 105. The system was started from a fully
occupied state up to t = 106 Monte Carlo steps (MCSs)
(throughout this paper, time is measured in MCSs and shown to
be unitless in the figures). MCSs are built up from full sweeps
of active sites. In one elementary MCS, an active site is selected
randomly and the activation is removed with probability
1 − p = 1/(1 + λ). Alternatively, one of its randomly selected
neighbors is activated with probability p = λ/(1 + λ). The
simulations were done around the critical point λc = 3.297 85
[39] of the CP. During the simulations, the times and the
intercommunication times (�) of neighbor activations of sites
are calculated and histogrammed. Following the repetition of
∼200 independent runs, these timing data were analyzed and
the probability distribution P (�) is calculated (see Fig. 1).

The systems during the runs are in a nonstationary state,
hence the average � should increase as it approaches ex-
tinction. Still, P (�) for finite sizes exhibits a power-law tail,
characterized by P (�) ∼ �−x with the exponent x = 1.85(5),
obtained by least-squares fitting to the data. To check if
the nonstationary state would cause a change in P (�), the
histogramming was performed for the early (t � 5 × 105

MCSs) and late (t > 5 × 105 MCSs) events separately. One
cannot see any differences, as all three P (�) distributions
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FIG. 1. (Color online) Intercommunication time distribution in
the 1D critical CP of size N = 105. The full line denote histogram-
ming from all times, the dashed line from high times, and long dashes
from low times. The dotted line shows a power-law fit for t > 200
resulting in ∝t−1.85(5). The solid thin line corresponds to runs from
seed initial conditions. Inset: the same data multiplied by the t1.85

corresponding to the tail decay.

exhibit power-law behavior. On the other hand, the P (�)
distributions above or below λc show exponential tails, as
expected.

The scaling behavior at the critical point can be derived
by expressing the intercommunication probability via the
temporal autocorrelation function. Infection events can happen
if there is an infected-uninfected neighbor pair, a kink in
the spin language: ni(t) = 1, at site i and time t . Using the
two-time autocorrelation function �(t,s), one can estimate the
probability of the subsequent infection events, separated by a
communication-free period � as

P (�) � p2�(t,s)
j<�∏

j=1

{(1 − p)�(j,s) + [1 − �(j,s)]}

� �(t,s) (1)

using the connected temporal correlator between times s

and t ,

�(t,s) = 〈ni(t)ni(s)〉 − 〈ni(t)〉〈ni(s)〉. (2)

Here 〈〉 denotes averaging for independent runs. In this
estimate, the correlations among the intercommunication
time events are neglected; however, this does not affect the
asymptotic behavior, because terms in the product are �O(1).

For 1D CP it is well known that this function exhibits an
aging behavior (see [37,40]), i.e., time translational invariance
is broken, but in the t,s → ∞ limit the densities 〈ni(t)〉 → 0
and the correlator scales as

�(t,s) ∝ (t/s)−θ = (�/s + 1)−θ . (3)

In the case of 1D CP, θ = 1.80(5) (see [37,40]). This is also true
for the kink variables, which also follow the same universal
scaling behavior, belonging to the directed percolation class

[37]. Strictly speaking, due to the aging behavior we have the
scale dependence P (t/s) ∼ �−θ and indeed the simulations
confirm this (see Fig. 1). Asymptotically, one can find the same
leading-order contribution for P (�), coming from the smallest
s in the statistical average, and the tail behaviors agree with
the autocorrelation function decay.

More generally, the site occupancy restriction condition of
the CP is not a necessary condition to find fat intercommuni-
cation tails. One can easily deduce that the power-law tail of
�(t,s) of infections causes also fat tails of the link-activation
intercommunication times. This has been confirmed by the
simulations. Furthermore, simulation runs that started from
small activated seeds (see [37]) resulted in the same tail in
P (�) again (see Fig. 1), only the distribution of activation
times changed. Contrary to the full initial condition case, in
which it decays as ∼�−0.16(1), it increases as ∼�0.33(1) in the
case of seeds.

III. BURSTYNESS OF THE CP ON GENERALIZED
SMALL-WORLD NETWORKS

In this section, I present results obtained for the CP on cer-
tain GSW networks [41]. It has been shown that these system
exhibit extended GP regions, with nonuniversal, λ-dependent
power-law dynamics [19,21]. The network generation starts
with N nodes on a ring. All nearest neighbors are connected
with Euclidean distance l = 1 with probability 1 and pairs with
l > 1 with a probability p(l) = 1 − exp(−βl−s). For a large
distance, this results in p(l) � βl−s . Now I consider the
following cases: s = 2 with β = 0.1 and 0.2.

The intercommunication times of nodes were followed in
networks with L = 106 nodes up to tmax = 106 MCSs, as in
case of the pure CP. The number of independent samples at
a given parameter, for which averaging was done, varied be-
tween 200 and 1000. The P (�) distributions were determined
for several λ’s in the GP of these networks. Invariance of P (�)
with respect to the measuring time windows has been checked,
similarly to the pure critical CP case.

As Fig. 2 shows, power-law tails emerge again, with slightly
λ-dependent slopes for β = 0.1 at λ = 2.97, 3.02, 3.07 within
the GP region of the model. To see the dependency on λ and
the corrections to scaling, I applied the standard local slope
analysis (see [37]) on the P (�) results. The effective exponent
of x, calculated as the discretized logarithmic derivative

xeff(t) = ln P (�′) − ln P (�)

ln(�) − ln(�′)
, (4)

where �/�′ = 2. As one can see from the inset of Fig. 2,
at the critical point λc = 3.07(1), determined in [21], x tends
to 1.90(1) asymptotically as � → ∞. Below λc, the effective
exponents converge to smaller values: x = 1.92(1) at λ = 3.02
and x = 1.96(1) at λ = 2.97. Corrections to the scaling are
rather strong for � < 5000, but the effective exponents seem
to saturate asymptotically. Note that, as in case of the density
decay study of this model [21], logarithmic corrections were
found in the GP.

As in case of the 1D CP, the tail results are not affected
by using an active initial seed condition or by measuring the
times between the communication attempts of the sites. The
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FIG. 2. (Color online) Intercommunication time distribution in
the GP of a GSW network with β = 0.1 of size N = 106 and
λ = 2.97, 3.02, 3.07 (bottom to top solid curves). The solid thin
line corresponds to runs from seed initial conditions measuring all
activation attempts. Inset: effective exponents defined as (4) of the
same data.

combined effect of these two modifications is shown in Fig. 2
for λc = 3.07.

For β = 0.2, one finds somewhat different power-law tails
inside the GP (see Fig. 3). The local slope analysis suggests
x = 1.94(1) at λc = 2.85, x = 1.96(1) at λ = 2.8, and x =
1.99(1) at λ = 2.75. One can clearly see tail behaviors,
characterized by increasing x exponents with β, in agreement
with the fact that the addition of long edges to the network
increases the topological dimension, thus the autocorrelation
exponent, which is θ = 4 in the mean-field limit.
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FIG. 3. (Color online) Intercommunication time distribution in
the GP of a GSW network with β = 0.2 of size N = 106 and
λ = 2.75, 2.8, 2.85 (bottom to top curves). Inset: effective exponents
defined as (4) of the same data.

IV. BURSTYNESS OF THE SIS MODEL
ON AGING SF NETWORKS

In this section, I present the SIS model results on aging
SF networks, where cutting the links among highly connected
nodes results in finite topological dimension and GP behavior
[24]. In the original Barabási-Albert (BA) [42] graph construc-
tion, one starts with a single connected node and adds new links
following the linear preferential rule. In [24], I investigated a
generalized model in which a fraction of the edges of the aging
nodes was removed from the BA graph by following a random,
linear preferential rule. Consequently, the edge distribution of
the BA graph, P (k) ∝ k−3, was cut off by an exponential factor
for large k’s, and quenched mean-field theory suggested a GP
behavior in agreement with the dynamical simulations.

SIS model density simulations were run on systems with
N = 105 nodes in the formerly determined GP region 2.4 <

λ < 2.7 of the aging BA graphs [24]. The occurrence of fat
tail P (�) distributions can be seen in Fig. 4, but now an even
network site (i) dependency emerges. This is related to the
fact that nodes are inhomogeneous: the average number of
edges decreases as 〈ki〉 ∼ i−1/2 by the BA network generation.
Least-squares error power-law fitting for � > 20 leads to λ and
i dependent decay exponents. For λ = 2.65 and i = 1 (highest
connectivity node), the P (�) decay is characterized by the
exponent x = 3.48(3), which is near the mean-field value of
the autocorrelation: θ = 4 of the CP. For less connected nodes
(i = 100), the decay is slower: P (�) ∝ �−2.96(3), getting
away from the mean-field value and coming closer to the
one-dimensional autocorrelation exponent of CP. This agrees
with our expectations, since for larger i’s the connectivity
decreases and the system exhibits autocorrelations of lower
dimensionality. By decreasing λ in the GP, as shown in Fig. 4,
we obtain the following decreasing series of asymptotic tail
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FIG. 4. (Color online) Intercommunication time distribution in
the GP of an aging BA network of size N = 105 for λ = 2.47, 2.5,
2.55, 2.59, 2.6, 2.65 (top to bottom curves) and measured at different
(i = 1 and 100) sites. Power-law fitting exponents for the tail behavior
are shown in the text. Inset: P (�)�4 at the λc of the CP defined on
the pure BA graph.
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exponents for i = 1: x = 3.48(3), 3.12(3), 2.64(2), 2.52(25),
2.42(2). For i = 100 at λ = 2.47, the tail exponent is x =
2.13(2). Again, logarithmic corrections to the dynamic scaling
can also be expected in the GP [18].

To complete this study, I also tested the critical point
behavior of P (�) in the case of CP on the pure BA network
(see [22]) at λc = 1.21. As the inset of Fig. 4 shows, the tail
behavior tends to a power law with x = 4 for � > 20.000.

V. DYNAMICS OF THE CP AND ARW
ON TIME-VARYING NETWORKS

A simulation program has been created with a fixed activity
potential F (V ) ∝ V −γ attached to vertexes, such that two
edges are connected to each node with that probability before
each “sweep” of the network. One sweep (or Monte Carlo
step) consists of N random CP updates of the network of N

nodes. I followed ρ(t) after starting from a fully occupied
(infected) state. The time is updated by one MCS after a full
network sweep. The simulations were run up to tmax = 2 × 105

MCSs on several sizes up to N = 107 and repeated for 102–103

independent randomly generated networks.
First a γ = 3 type of network has been studied. The finite-

size effects are strong, but for large sizes (N ∼ 107) a phase
transition seems to appear with ρ ∝ 1/t decay, which agrees
with the heterogeneous mean-field prediction [22] (see Fig. 5).
Similar results have been found for γ = 2.8 networks.

I have also tested the dynamical behavior of the annihilating
random walk (ARW) [37] in networks with activity potential
parameters: γ = 0.6,0.8,0.9,1,3.8. The ARW model is a
solvable model in homogeneous, Euclidean system, in which
randomly selected particles hop to neighboring empty sites or
annihilate with others upon collision. In the high-dimensional
mean-field limit, the density of particles decays asymptotically
as t ∝ 1/t . As Fig. 6 shows, simulations up to tmax = 105

MCSs with N = 107 nodes result in the same asymptotic
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FIG. 5. (Color online) Density decay of the contact process in
time-varying networks of sizes N = 107 for λ = 2.936, 2.938, 2.940,
2.942 (bottom to top). The dashed line shows a power-law fit to the
λ = 2.94 (critical) curve. The activity potential decays with γ = 3.
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FIG. 6. (Color online) Density decay in the ARW in time-varying
networks of sizes N = 107 for γ = 0.6, 0.8, 0.9, 1, 3.8 (bottom to
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mean-field behavior following a long crossover time. This
suggests that slow, nonuniversal dynamics in activity-driven
time-varying networks does not exist, strengthening the
hypothesis [20] that quenched heterogeneity is a necessary
condition for observing rare-region effects.

Not so surprisingly, burstyness does not occur in such time-
varying networks either, because the network rewiring process
destroys the long-range dynamical correlations. Simulations
result in exponential tail P (�) distributions.

VI. CONCLUSIONS

The observed burstyness in network systems is assumed
to be related to the internal, non-Poissonian behavior of
agents or state variables. This has been explained by different
multilevel or time-scheduling internal models. In this paper,
I demonstrated an alternative route to this, being a natural
consequence of correlated, complex behavior of the whole
system. In the case of the critical, one-dimensional contact
process, fat-tailed intercommunication time distribution arises
related to the diverging autocorrelation function. Furthermore,
with the addition of long edges, which turns the network
into GSWs with Griffiths phases, one can observe topology-
dependent, fat-tailed intercommunication time distributions.

I have also shown that in the case of an aging scale-
free network that exhibits Griffiths phase, these power-law
distributions depend also on the average connectivity of nodes.
The observed tail exponents vary in the range x = 2–4, which
is smaller than the experimental values reported in human
communication data sets [10,11]. However, as the GSW
model example shows, there are networks that possess smaller
topological dimensions, where x < 2. Furthermore, there are
other models [40], such as the bosonic contact process or the
bosonic pair contact process, where the autocorrelation decays
slower (θ = D/2 for these unrestricted CPs [43]), thus x could
also be smaller in networks.

It is important to note that these systems are in a nonsta-
tionary state during the simulations while the tail distributions
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remain time-invariant and initial condition invariant. Usually
real systems are also in a nonstationary state as a consequence
of various external conditions, such as circadian oscillations. In
the case of regular networks, the distributions are site-invariant
as well.

Finally, I have shown that both the contact process and
annihilating random walks exhibit mean-field-like dynamics
in time-varying, scale-free networks in which GP effects are
absent and the distribution of intercommunication times is not
bursty, but is characterized by an exponential tail distribution.

These results suggest that bursty behavior can emerge
as a collective behavior in quenched network systems close
to criticality or in extended GP-like regions, suggesting the

necessity for a closer inspection of such systems. When real-
world data confirm that sites exhibit inherent bursty behavior,
the overlap of the two reasons should emerge, possibly with the
outcome of the more relevant one, which decays more slowly.
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